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1 Materials and Methods

Whole mount in situ hybridization was performed as previously described [33]
using probes directed against mouse Sox9, Hoxd13, Hoxd12 and Coll21a (kindly
provided by Denis Duboule, and Susan Mackem).

Whole-mount skeletal preparations were performed by staining with Alizarin
Red and Alcian blue following standard protocols.

All measurements were performed in pictures taken from specimens in PBS
after whole mount in situ hybridization. Although the process of dehydration
shrinks the tissue, the posterior rehydration brings it back to the previous size
[34].
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2.1 Introduction

Three qualitative behaviors support a self-organizing mechanism in contrast to
a positional information model for the specification of the digit pattern:

• More digits are formed when the developmental field is increased. This
can be seen in Figure 1A by comparing the WT skeletal pattern with that
of the Gli3 -/- mutant that has a bigger autopod and more digits.

• Progressive allele removal of a strongly related family of genes (distal Hox
genes) induces the formation of an increased number of thinner digits
within the same space.

• Distal digit bifurcations occur.
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These observations are difficult to explain with a positional information
model and are consistent with the hypothesis that distal Hox genes control
a self-organizing mechanism responsible for the periodic patterning of digits.
Furthermore, Turing models have frequently been criticized on the grounds that
they predict significant variability in phenotypic result, and therefore do not dis-
play the robustness perceived to be inherent in developmental mechanisms. The
observed variability in digit number and digit bifurcations within each genotype
analyzed in this study provides an important counter-argument, as it highlights
that some naturally-evolved developmental systems may be less robust than
sometimes imagined.

The quantification showed in Figure 4B-C reveals that from the Hoxa13
+/+; Hoxd11-13 +/+ mutant to the Hoxa13 +/-; Hoxd11-13 -/- mutant the
average digit period is reduced of 1.5 times. Figure 1C and Figure 4B highlight
that within each limb the average digit period is increased from the proximal
to the distal boundary of the autopod. This scaling is reduced when Hox genes
are removed and distal digit bifurcations are observed. In addition, two other
phenomena are observed when distal Hox genes are removed:

• The formation of the skeletal pattern is delayed. This is highlighted in Fig-
ure S2 where the skeletal patterns of the Gli3 +/- ; Hoxa13 +/-; Hoxd11-
13 -/- mutant and the Gli3 -/- ; Hoxa13 +/-; Hoxd11-13 -/- mutant are
compared with the patterns of the Gli3 -/- and the Gli3 +/- mutant at a
similar stage.

• The PD length of the distal region is reduced. This is showed by the
Sox9 hybridizations in Figure 3 and confirmed at later stages by Col2a
hybridizations, see the Figure S3.

From the quantification we formulated the following hypothesis:

• Hox genes increase the wavelength of a self-organizing mechanism.

• Hox genes increase the speed of pattern appearance.

• Hox genes increase the wavelength in a PD graded manner and control
the PD width of the digits.

To investigate these hypothesis we analyzed the behavior of a general two
dimensional reaction-diffusion model that is able to self organize to produce a pe-
riodic pattern. Alternatively, a self-organizing mechano-chemical model based
on cellular re-organizations could be considered. However, recent results [37]
highlighted that very limited change in cellular properties is observed at early
times after skeletal pattern specification. Moreover, previous studies [11][40]
showed that mechano-chemical models capable of forming periodic patterns are
mathematically equivalent to reaction-diffusion models. Therefore, we are con-
fident that our results could be easily related to more complex models that
include change in cellular behavior.
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2.2 The Turing reaction-diffusion model

We considered a general reaction-diffusion model made of two reactants u and
v in the form:

∂u

∂t
= f(u, v) + du∇2u

∂v

∂t
= g(u, v) + dv∇2v

(1)

The biological implementation of the reaction kinetics f and g is unknown.
For this reason, we used the general model developed in [25] that is obtained by
linear approximation around the steady state (0, 0). In addition, a cubic term
(u3) was used to limit the growth of the activator. We obtained f and g in the
form:

f(u, v) = fuu+ fvv − u3

g(u, v) = guu+ gvv
(2)

Any reaction-diffusion model of two species can be approximated to this
general form by Taylor expansion up to the cubic term. According to [43] this
model produces a diffusion-driven instability when the following conditions are
satisfied:

fu + gv < 0, fugv − fvgu > 0

dufu + dvgv > 0, (dvfu + dugv)
2 − 4d(fugv − fvgu) > 0

(3)

The parameters showed in Table ST1 that just satisfies the condition (3) were
used as a starting point for our analysis.

fu fv gu gv du dv
0.49 -0.5 0.5 -0.5 70 875

Table ST1: The parameter set used, the spatial unit is µm

This parameter set represents an Activator-Inhibitor model where u is an acti-
vator that auto-activates itself and promotes its own inhibitor (v). The corre-
sponding network diagram is shown in Figure S7.
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Figure S7: The network of the Activator-Inhibitor model

As an alternative, a Substrate-Depleted model could be obtained by inverting
the signs of the parameter gu and fv. This would result in a model where an
activator (u) depletes a substrate (v) to auto-activate itself. In this study we
analyzed only the behavior of the Activator-Inhibitor model.

2.3 The effect of Hox genes

To investigate the possible role of Hox genes we analyzed how the different pa-
rameters of the model (Figure S7) affect the wavelength and the speed of pattern
formation. To analyze the wavelength we first calculated the wavenumber k2 of
the mode with the largest eigenvalue λ as showed in [25]:

k2 =
−dudv(fu − gv) + (du + dv)

√
−dudvfvgu

dudv(dv − du)
(4)

and calculated the wavelength ω of the corresponding one-dimensional case with
zero-flux boundary conditions as presented in [43]:

ω =
2π√
k2

(5)

To analyze the speed of appearance (λmax) we use the formula presented in [25]:

λmax =
dvfu − dugv − 2

√
−dudvfvgu

dv − du
(6)

The goal of our analysis was to identify which parameters can be modulated by
Hox genes to increase both the wavelength ω and the speed of pattern formation
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λmax. Also we wanted to identify the parameters that defined the region where
patterning mechanism was active, as we observed a progressive PD digit length
reduction and no pattern was formed whenHox genes were completely removed.
Formally, the pattern formation is achieved when the condition λmax > 0 is
satisfied.

Trivial candidates that could account for the increase in wavelength are the
diffusion constants du and dv. When we used the parameters presented in Table
ST1 and allow only one of the diffusion constant to change at the time, du and
dv could vary in the following ranges according to (3):

du < 645.013 dv > 94.95

When du or dv were increased as showed in Figure S8, the wavelength ω was
increased.
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Figure S8: The effect of one diffusion constant on λmax and ω

When the diffusion of the activator du was increased approximately three times
the wavelength ω was increased of 1.5 times. In contrast, to obtain a similar
increase in ω with the inhibitor, the diffusion constant dv had to increase 12
times. Another difference between du and dv was the relation with the speed of
pattern appearance λmax. In agreement with the results presented in [25], we
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found that λmax was decreased (slower pattern formation) when du increased
while the opposite result occurred (faster pattern formation) when dv increased.
Therefore, assuming that Hox genes have to promote both faster pattern forma-
tion (greater λmax) and bigger wavelength (greater ω) the only good candidate
for being under the effect of Hox genes was dv.

When we allowed both diffusion constants to vary at the same time, we could
more easily obtain the desired change in ω by simultaneously scaling du and dv
of 1.5, as showed in Figure S9.
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Figure S9: The effect of both diffusion constants on λmax and ω

However, in this case λmax remained constant.
In conclusion dv was the only parameter that could account for both an in-

crease in ω and λmax. As mentioned above, dv has to increase approximately 12
times to obtain the change in wavelength that we observe upon Hox genes re-
moval. A recent study showed that similar differences in diffusion constants can
indeed be observed in vivo [44]. It has been proposed that proteo-glycans in ex-
tracellular matrix can act as diffusion modulators [42]. However, the molecular
basis of diffusion modulation remains largely unknown.

For this reason we concentrated our analysis on the reaction kinetic param-
eters fu, fv, gu and gv that are easier to relate to the change in gene regulation
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that follows Hox alleles removal. We explicitly ignored more complex cases
where reaction kinetic parameters were modulated in conjunction with diffu-
sion constants. However, our analysis can be easily extended to consider the
parameters dv and du mentioned in the previous paragraph.

To analyze the effect of a change in the kinetic parameters, we allowed two
parameters to change at the time and calculated the parameter region that re-
spected the Turing-instability conditions (3). For each parameter couple we
produced two graphs visualizing the Turing-instability region: one showed the
change in wavelength ω and one showed the change in speed of pattern ap-
pearance λmax. This allowed us to see the effect of a single parameter change
in different regions and to investigate the relation between the parameters. In
total we obtained 12 graphs (6 parameter couples), showed in Figure S4 and
Figure S5. Our analysis of λmax confirmed the results presented in [25] showing
that an increase in the inhibition strength of fv or in the activation strength of
gu decreases λmax (slower pattern formation) while an increase in the activa-
tion strength fu or in the inhibition strength gv increases λmax (faster pattern
formation).

Our analysis of the wavelength ω instead revealed that an increase in strength
of the auto-activation fu or the the auto-inhibition gv increases the wavelength
while an increase in the cross-inhibition fv and the cross-activation gu decreases
the wavelength. We also noted that across the parameter space, a change in fv
or in gu has a greater effect on the wavelength than a change in fu or in gv. In
particular we found that fv and gu were the only parameters able to produce
enough change in wavelength to account for the reduction observed upon Hox
removal.

In conclusion either a decrease in the activation strength of gu or a decrease
in the inhibition strength fv was able to reliably promote enough increase in
ω and in λmax. This may depend on the specific difference du and dv that we
choose and it may change if we consider more complex Turing models with basal
productions or non-linear terms. However, within the scope of this analysis fv
and gu were the best candidates for being under the control of Hox genes.

2.4 Numerical Simulations

Next, we performed a number of two-dimensional numerical simulations to ex-
plore the effect of the different parameters on the pattern. This requires integrat-
ing partial differential equation of the form (1). To this extent, we developed our
own numerical simulator that integrates the reaction part using a second order
Runge-Kutta method with adaptive time-step (also known as Heun’s method)
and a Finite Volume Method to solve the diffusion part. The Heun method es-
timates an error by comparing the results obtained with an Euler Method with
the results obtained with a second order Runge-Kutta. According to this error,
the time-step is resized during the simulation. The Finite Volume Method sim-
ulates the diffusion between neighboring triangles on an unstructured triangular
grid. This is obtained by applying the Fick’s law of diffusion on each edge of
the grid to diffuse the reactants between triangle centroids.
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All the simulations that we performed had zero-flux boundary conditions
for the diffusible species. The initial conditions were obtained with a random
Gaussian perturbation around the homogeneous steady state (u, v) = (0, 0) with
magnitude of the order 10−3. Moreover, to make sure that our results were
robust against noise we added a 1% of multiplicative Gaussian noise to both
u and v throughout the simulation. The simulations were run until a stable
pattern was reached.

To explore the two-dimensional patterns that were formed by this system, we
initially generated a square grid using the finite element grid generator Gmesh
[38]. The triangular grid is shown in Figure S10.

Figure S10: The square triangular grid used for the numerical simulations

Simulations on the square domain revealed that this general Turing model
always produces stripes due to the reverse symmetry of the system given by the
u3 term. This was a suitable feature to produce digit-like patterns. However,
quadratic terms could be introduced in the reaction part to produce a spot like
pattern. Next, we investigated how the speed of pattern appearance (λmax)
affects the pattern that is formed. This was done by running simulations with
different values of fu, as this parameter is mostly affecting λmax and is virtually
not changing ω. We found that for low values of λmax the stripes direction-
ality was quite homogeneous across the domain, while for high values of λmax

irregular labyrinth-like patterns were formed. This is highlighted in Figure S11.
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Figure S11: The effect of λmax on stripe directionality

Related findings have been recently presented in [45]. However, even for small
λmax the overall directionality of the stripes was random. Stripe directionality is
a crucial aspect to obtain a robust pattern formation in real biological systems.
It has been showed that stripe orientation can be controlled with anisotropic
diffusion [46] or with specific boundary conditions [36]. Since there is no evidence
for either of these two features in the limb bud, we searched for an alternative
strategy.

Interestingly, we found that under certain conditions a spatial gradient of
λmax is able to orient the stripes. This is shown in Figure S12 where fu was
scaled along the x axis with an exponential function.
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Figure S12: Stripe orientation with fu spatial scaling

Intuitively, stripe orientation is achieved because the pattern forms earlier in
the regions with a high λmax and subsequently propagates in the regions with
smaller λmax. Because of the exponential gradient, the region where the pattern
is initially formed is quite narrow and a regular aligned pattern can be obtained.
We found that this mechanism worked independently from the initial conditions,
was robust to noise and was able to orient stripes with different wavelengths.
Depending on the range of fu that was considered, different gradients had to be
used to obtain a good orientation. Moreover, we found that the orientation was
better when very high values of λmax were avoided. However, we consistently
found that exponential gradients or short linear gradients were able to drive
stripe orientation. In contrast, a gradient with a logarithmic profile promoted
almost the opposite alignment (parallel to the gradient) .

We hypothesized that this strategy is used in the limb to orient the digits
toward the distal tip. This implies that a distal gradient (e.g. Fgfs coming from
the Apical Ectodermal Ridge - AER) has to increase fu and therefore λmax to
orient the stripes. Interestingly, this hypothesis is consistent with the results
presented in [25] that show that Fgfs increase λmax in micromass culture. It is
therefore plausible that Fgfs in combination with growth are indeed helping to
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get the correct digit alignment in vivo.
Next we performed numerical simulations on a domain with the experimental

shape of the Gli3 -/- mutant. We used an outline of a representative specimen
and generated a triangular grid with the software Gmesh. The resulting trian-
gular grid is shown in Figure S13.

Figure S13: The triangular limb grid made from the experimental Gli3 -/- shape

We mapped the experimental expression pattern of Hoxa13 into this realistic
domain shape by using the Vtk library [35]. Eventually, we normalized the
expression pattern between 0 and 1. This expression pattern was used as an
approximation for Hox genes in the model. In addition, we simulated an Fgf
signaling gradient by diffusing a substance from a region corresponding to the
AER into the mesenchyme. The patterns of Hox expression and Fgf signaling
are showed in Figure S14.

Figure S14: The patterns of Hox expression and Fgf signaling
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The Fgf gradient was simulated with the following equation:

∂Fgf

∂t
= αfgf − µfgfFgf + dfgf∇2Ffg

with parameters:

αfgf = 1, µfgf = 0.01, dfgf = 400

where αfgf is a source term that was active only on the distal boundary that
corresponds to the AER (highlighted by the arrows in Figure S14). In the rest of
the domain zero-flux boundary conditions were used. Eventually, the gradient
was normalized between 0 and 1.

The two PD profiles of Fgf and Hox are shown in Figure S15.
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Figure S15: The PD profiles of Fgf and Hox

2.5 Details of the Simulations in Fig 1D-E

The concept of modulating Turing parameters in a non-homogeneous manner,
using global gradients, has previously been explored in 1D [41] and more recently
in 2D [39]. Here, to test the hypothesis that a PD graded modulation of the
wavelength was required to avoid digit bifurcations, we explored the effect of
a uniform and a graded PD distribution of the parameters that we identified
as the best candidates to modulate the wavelength: fv and gu. We developed
a model where fv and gu were either constant or modulated by Fgf within an
active distal region. The active distal region was defined by using the following
equations:
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f(u, v) = (fu + kfu · Fgf)u+ fvv − u3

g(u, v) = guu+ gvv
(7)

This strategy provided a gradient of fu that promoted correct stripe ori-
entation. Moreover, by starting from fu values that were outside the Turing-
instability region and by choosing an appropriate value for kfu we were able to
define an active distal region that reflected the PD size of the Gli3 -/- digital
region. This was done by calculating λmax along the PD axis and by comparing
the region were λmax > 0 (active patterning) with the digit PD length of the
Gli3 -/- mutant.

Using this model we then explored the effect of a uniform and a graded dis-
tribution of fv and gu.

2.5.1 Figure 1D - Uniform wavelength distribution

In this case we set fv and gu to constant values. In addition, we selected
an appropriate range for fu to obtain correct stripe orientation. We selected
values of fv and gu to match to the average wavelength of the Gli3 -/- mutant.
Simulations with a uniform value of fv and gu showed distal digit bifurcations
that were due to the bigger distal autopod size. The simulation showed in Figure
1D of the main text was obtained with the parameter set showed in table ST1
except for the following parameters:

fu = 0.28, kfu = 0.15; gu = 0.75

This parameter set is represented graphically in Figure S16.

Figure S16: Graphical representation of the parameters used in the simulation
of Figure 1D
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The black arrow represents the parameter values seen along the PD axis of
the domain. It shows the change in fu that is promoted by Fgf to drive the
stripe orientation. The arrow starts from a parameter region where there is
no Turing-instability (white region) and ends up in an active region (colored
region) where λmax > 0 and a pattern is formed. Since fu is changed by Fgf
(a proximal-distal graded signal) a distal active region is obtained. λmax and ω
along the PD autopod profile are shown in Figure S17.
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Figure S17: λmax and ω PD profiles of the simulation in Figure 1D

The graph on the left shows λmax. The region above the dashed line (λmax=0)
is the active distal region. The graph on the right highlights the uniform wave-
length distribution obtained with a constant fv and gu. The slight increase in
wavelength in the distal part of the limb is due the increase in fu that was used
to align the stripes. However, it was found to be negligible with respect to the
pattern formed.

2.5.2 Figure 1E - PD Graded wavelength

In this case we modulated the wavelength by changing either fv or gu with the
Fgf gradient. Similarly to the previous case we also selected an appropriate
range for fu to obtain correct stripe orientation.

First we simulated a change in the parameter fv. To this extent we modified
the equations (7) in the following way:

f(u, v) = (fu + kfu · Fgf)u+ (fv + kfv · Fgf)v − u3

the equation g(u, v) was unchanged. We chose parameters fu, fv, kfu, kfv that
started from a parameter region where λmax < 0 and moved towards a param-
eter region where ω was increased. A graphical example of the parameters that
we used is showed in Figure S18.
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Figure S18: Graphical representation of the parameters used in the PD graded
fv case

The arrow highlights the change in fv and fu that is promoted by Fgf. The
starting point of the arrow is outside the Turing-instability region (white region)
where λmax < 0. The specific arrow presented above was obtained with the
following parameters:

fu = 0.42, kfu = 0.05, fv = −1.7, kfv = 1.1

Unfortunately, we found consistently that the stripe orientation was compro-
mised. In particular, the pattern traveled toward the distal tip of the limb and
in this way the orientation provided by fu was disrupted. An example of the
qualitative behavior that we observed is shown in Figure S19.

Figure S19: Example of simulation with a PD graded fv
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The arrows highlight the direction where the pattern was moving over time. We
tried different combinations of Fgf gradients and different fv and fu ranges but
found consistently that this behavior was difficult to avoid. Intuitively, this was
happening because a lower strength of fv in the distal tip destabilized the acti-
vator pattern and produced the traveling behavior. Therefore, with our current
alignment strategy, we could not manage to modulate fv to match the skeletal
pattern of the Gli3 -/- mutant.

We decided to discard this strategy and try with the parameter gu. This
time we modified the equation (7) in the following way:

f(u, v) = (fu + kfu · Fgf)u+ fvv − u3

g(u, v) = (gu − kgu · Fgf)u+ gvv
(8)

Like in the previous case, we chose a parameter set fu, gu, kfu, kgu that started
from a region where λmax < 0 and moved towards a parameter region where the
ω was increased. This time our simulations revealed that the orientation of the
stripes was not compromised. Indeed, we consistently found that a PD graded
gu was actually helping to get a good orientation. The simulation showed in
Figure 1E was obtained with the parameter set showed in Table ST1 except for
the following parameters:

fu = 0.42, kfu = 0.05, gu = 1.7, kgu = 1.1

A graphical representation of the parameters that were used is shown in Figure
S20.

Figure S20: Graphical representation of the parameters used in the simulation
of Figure 1E
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Like in the previous case, the arrow represented the PD change in gu and fu
that was promoted by Fgf . λmax and ω along the a PD autopod profile are
shown in Figure S21.
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Figure S21: λmax and ω PD profiles of the simulation in Figure 1E

The graded wavelength prevented distal digit bifurcations and helped to obtain
the correct orientation of the stripes. This highlighted that an effective PD
scaling of the wavelength was required if digit bifurcations had to be avoided.
In conclusion, our quantification provided evidence that distal Hox genes mod-
ulated the wavelength. Moreover, we found both from the quantification and
from our computational analysis that this modulation has to be done in a PD
graded manner to avoid distal digit bifurcation. Therefore, in our model we
assumed that Hox genes modulate the wavelength in a PD graded manner by
cooperating with AER secreted molecule like Fgfs.

2.6 Details of the Simulations in Fig 3

To simulate the effect of the Hox gene alleles removal, we extended the model
that had a PD graded gu to consider Hox genes. We modified the equations
(8) in the following way:

g(u, v) = (gu − kgu · khoxHox · Fgf)u+ gvv

f(u, v) was unchanged. The new Hox term corresponded to the experimental
pattern of Hoxa13 that we mapped into the grid. The parameter khox was a
weight constant that represented the Hox dose and that was initially set to 1.
We left the scaling of the parameter fu in the model that promoted correct
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stripe orientation. The network diagram of the model is highlighted in Figure
4A of the main text.

First, we chose parameters that were able to match the skeletal pattern of
Gli3 -/- mutant and its wavelength distribution along the PD axis (black line
Figure 4B). The same parameters that we used for the simple PD graded gu
model were found to be still suitable to match the Gli3 -/- pattern. The param-
eters were those presented in table ST1 except for the following parameters:

fu = 0.42, kfu = 0.05, gu = 1.7, kgu = 1.1

This parameter set is highlighted by the read arrow in Figure S22.

Figure S22: Graphical representation of the parameters used in the simulations
of Figure 3

We simulated the progressive removal of Hox alleles by decreasing the param-
eter khox that represented Hox dose. This is shown by the progressively shorter
black arrows in Figure S22. When Hox dose was reduced, ω (wavelength) and
λmax (patterning speed) were decreased. Moreover, the wavelength PD scaling
became shallower and distal digit bifurcations occurred. In addition, the size
of the active patterning region, that defined the PD digit length, was also re-
duced. This is highlighted in Figure S22 by the fact that a progressively shorter
proportion of the black arrows is overlapping with the Turing-instability region
where λmax > 0 (colored region). All these behaviors were consistent with the
phenotypes observed upon Hox alleles removal. Figure S6 shows how ω and
λmax changed along a PD axis of the autopod when Hox dose was reduced, all
the features discussed above are highlighted graphically.
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The values of khox that were used to simulate the progressive Hox dose
reduction are shown ST2.

Hoxa13 +/+ +/− +/+ +/− −/−
Hoxd11− 13 +/+ +/− −/− −/− −/−

khox 1 0.7 0.5 0.2 0

Table ST2: Values of khox used in the simulations of Figure 3
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3 Supplementary Material for Figure 1C

3.1 Wavelength quantification of the WT
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3.2 Wavelength quantification of the Gli3 -/- ; Hoxa13
+/+ mutant
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3.3 Wavelength quantification of the Gli3 -/- ; Hoxa13
+/- mutant
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3.4 Wavelength quantification of the Gli3 -/- ; Hoxa13
-/- mutant
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4 Supplementary Material for Figure 4B

4.1 Wavelength quantification of the Gli3 -/- ; Hoxa13
+/+; Hoxd11-13 +/+ mutant
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4.2 Wavelength quantification of the Gli3 -/- ; Hoxa13
+/-; Hoxd11-13 +/- mutant
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4.3 Wavelength quantification of the Gli3 -/- ; Hoxa13
+/+; Hoxd11-13 -/- mutant
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4.4 Wavelength quantification of the Gli3 -/- ; Hoxa13
+/-; Hoxd11-13 -/- mutant
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5 Supplementary Material for Figure 4C

5.1 Average wavelength quantification of the Gli3 +/+
background mutants
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5.2 Average wavelength quantification of the Gli3 +/-
background mutants
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5.3 Average wavelength quantification of the Gli3 -/- back-
ground mutants
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6 Figure S1

Expression of Hoxd13 and Hoxd12 in E12.5 limbs of the Hoxa13;Gli3 allelic
series. Note anterior upregulation of Hoxd13 and Hoxd12 in absence of Gli3.
Genotypes are marked at the top of each column and probes on the left.
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7 Figure S2

Expression of Sox9 in limbs of the Hoxa13;Hoxd11-13;Gli3 allelic series. Note
the delay in the formation of the digit pattern when the Hox dose is low
(Hoxa13+/-;Hoxd11-13-/-).
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8 Figure S3

Expression of Coll21a in E14.5 limbs of the Gli3 -null background with progres-
sive decrease in distal Hox dose showing the reduction in the PD extension of
the digital region.
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9 Figure S4

The effect of the reaction parameters on λmax and ω: (fu, fv),(fu, gu) and
(fv, gu). Two graphs visualizing the change in speed of pattern appearance
(λmax) and wavelength (ω) within the Turing-instability region are shown for
each parameter couple.
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10 Figure S5

The effect of the reaction parameters on λmax and ω: (fu, gv),(gv, fv) and
(gu, gv). Two graphs visualizing the change in speed of pattern appearance
(λmax) and wavelength (ω) within the Turing-instability region are shown for
each parameter couple.
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11 Figure S6

λmax and ω PD profiles of the simulation in Figure 3

ω

Space (P-D)

maxλ

PD digit size

Space (P-D)

maxλ <0

Khox=1 Khox=0.7 Khox=0.5 Khox=0.2 Khox=0

-0.05

0

0.05

0.1

0.15

0.2

400 500 600 700

400 500 600 700

100

120

130

140

150

160

Hox dose reduction

no
pattern

slower
pattern

formation

smaller
wavelength
(more digits)

&
shallower
gradient

(digit 
bifurcations)

39



References and Notes 

1. M. F. Bastida, M. A. Ros, How do we get a perfect complement of digits? Curr. Opin. Genet. 

Dev. 18, 374 (2008). doi:10.1016/j.gde.2008.06.009 Medline 

2. R. Zeller, J. López-Ríos, A. Zuniga, Vertebrate limb bud development: Moving towards 

integrative analysis of organogenesis. Nat. Rev. Genet. 10, 845 (2009). 

doi:10.1038/nrg2681 Medline 

3. B. Wang, J. F. Fallon, P. A. Beachy, Hedgehog-regulated processing of Gli3 produces an 

anterior/posterior repressor gradient in the developing vertebrate limb. Cell 100, 423 

(2000). doi:10.1016/S0092-8674(00)80678-9 Medline 

4. Y. Litingtung, R. D. Dahn, Y. Li, J. F. Fallon, C. Chiang, Shh and Gli3 are dispensable for 

limb skeleton formation but regulate digit number and identity. Nature 418, 979 (2002). 

doi:10.1038/nature01033 Medline 

5. P. te Welscher et al., Progression of vertebrate limb development through SHH-mediated 

counteraction of GLI3. Science 298, 827 (2002). doi:10.1126/science.1075620 Medline 

6. S. Kondo, T. Miura, Reaction-diffusion model as a framework for understanding biological 

pattern formation. Science 329, 1616 (2010). doi:10.1126/science.1179047 Medline 

7. A. M. Turing, The chemical basis of morphogenesis. Philos. Trans. R. Soc. London Ser. B. 

237, 37 (1952). doi:10.1098/rstb.1952.0012 

8. S. A. Newman, H. L. Frisch, Dynamics of skeletal pattern formation in developing chick limb. 

Science 205, 662 (1979). doi:10.1126/science.462174 Medline 

9. A. Gierer, H. Meinhardt, A theory of biological pattern formation. Kybernetik 12, 30 (1972). 

doi:10.1007/BF00289234 Medline 

10. T. Miura, K. Shiota, G. Morriss-Kay, P. K. Maini, Mixed-mode pattern in Doublefoot mutant 

mouse limb—Turing reaction-diffusion model on a growing domain during limb 

development. J. Theor. Biol. 240, 562 (2006). doi:10.1016/j.jtbi.2005.10.016 Medline 

11. P. K. Maini, M. Solursh, Cellular mechanisms of pattern formation in the developing limb. 

Int. Rev. Cytol. 129, 91 (1991). doi:10.1016/S0074-7696(08)60510-0 Medline 

12. S. A. Newman, Sticky fingers: Hox genes and cell adhesion in vertebrate limb development. 

Bioessays 18, 171 (1996). doi:10.1002/bies.950180302 Medline 

13. J. Zákány, D. Duboule, Hox genes in digit development and evolution. Cell Tissue Res. 296, 

19 (1999). doi:10.1007/s004410051262 Medline 

14. J. Zákány, M. Kmita, D. Duboule, A dual role for Hox genes in limb anterior-posterior 

asymmetry. Science 304, 1669 (2004). doi:10.1126/science.1096049 Medline 

15. M. Kmita et al., Early developmental arrest of mammalian limbs lacking HoxA/HoxD gene 

function. Nature 435, 1113 (2005). doi:10.1038/nature03648 Medline 

16. Y. Chen et al., Direct interaction with Hoxd proteins reverses Gli3-repressor function to 

promote digit formation downstream of Shh. Development 131, 2339 (2004). 

doi:10.1242/dev.01115 Medline 

http://dx.doi.org/10.1016/j.gde.2008.06.009
http://dx.doi.org/10.1016/j.gde.2008.06.009
http://dx.doi.org/10.1038/nrg2681
http://dx.doi.org/10.1038/nrg2681
http://dx.doi.org/10.1016/S0092-8674(00)80678-9
http://dx.doi.org/10.1016/S0092-8674(00)80678-9
http://dx.doi.org/10.1038/nature01033
http://dx.doi.org/10.1038/nature01033
http://dx.doi.org/10.1126/science.1075620
http://dx.doi.org/10.1126/science.1075620
http://dx.doi.org/10.1126/science.1179047
http://dx.doi.org/10.1126/science.1179047
http://dx.doi.org/10.1098/rstb.1952.0012
http://dx.doi.org/10.1126/science.462174
http://dx.doi.org/10.1126/science.462174
http://dx.doi.org/10.1007/BF00289234
http://dx.doi.org/10.1007/BF00289234
http://dx.doi.org/10.1016/j.jtbi.2005.10.016
http://dx.doi.org/10.1016/j.jtbi.2005.10.016
http://dx.doi.org/10.1016/S0074-7696(08)60510-0
http://dx.doi.org/10.1016/S0074-7696(08)60510-0
http://dx.doi.org/10.1002/bies.950180302
http://dx.doi.org/10.1002/bies.950180302
http://dx.doi.org/10.1007/s004410051262
http://dx.doi.org/10.1007/s004410051262
http://dx.doi.org/10.1126/science.1096049
http://dx.doi.org/10.1126/science.1096049
http://dx.doi.org/10.1038/nature03648
http://dx.doi.org/10.1038/nature03648
http://dx.doi.org/10.1242/dev.01115
http://dx.doi.org/10.1242/dev.01115


17. M. Kmita, N. Fraudeau, Y. Hérault, D. Duboule, Serial deletions and duplications suggest a 

mechanism for the collinearity of Hoxd genes in limbs. Nature 420, 145 (2002). 

doi:10.1038/nature01189 Medline 

18. C. Fromental-Ramain et al., Hoxa-13 and Hoxd-13 play a crucial role in the patterning of the 

limb autopod. Development 122, 2997 (1996). Medline 

19. J. Zákány, C. Fromental-Ramain, X. Warot, D. Duboule, Regulation of number and size of 

digits by posterior Hox genes: A dose-dependent mechanism with potential evolutionary 

implications. Proc. Natl. Acad. Sci. U.S.A. 94, 13695 (1997). 

doi:10.1073/pnas.94.25.13695 Medline 

20. A. P. Davis, M. R. Capecchi, A mutational analysis of the 5′ HoxD genes: Dissection of 

genetic interactions during limb development in the mouse. Development 122, 1175 

(1996). Medline 

21. D. J. Goff, C. J. Tabin, Analysis of Hoxd-13 and Hoxd-11 misexpression in chick limb buds 

reveals that Hox genes affect both bone condensation and growth. Development 124, 627 

(1997). Medline 

22. V. Knezevic et al., Hoxd-12 differentially affects preaxial and postaxial chondrogenic 

branches in the limb and regulates Sonic hedgehog in a positive feedback loop. 

Development 124, 4523 (1997). Medline 

23. R. Sheth, M. F. Bastida, M. Ros, Hoxd and Gli3 interactions modulate digit number in the 

amniote limb. Dev. Biol. 310, 430 (2007). doi:10.1016/j.ydbio.2007.07.023 Medline 

24. E. McGlinn et al., Pax9 and Jagged1 act downstream of Gli3 in vertebrate limb development. 

Mech. Dev. 122, 1218 (2005). doi:10.1016/j.mod.2005.06.012 Medline 

25. T. Miura, P. K. Maini, Speed of pattern appearance in reaction-diffusion models: 

implications in the pattern formation of limb bud mesenchyme cells. Bull. Math. Biol. 66, 

627 (2004). doi:10.1016/j.bulm.2003.09.009 Medline 

26. J. Lopez-Rios et al., GLI3 constrains digit number by controlling both progenitor 

proliferation and BMP-dependent exit to chondrogenesis. Dev. Cell 22, 837 (2012). 

doi:10.1016/j.devcel.2012.01.006 Medline 

27. R. D. Dahn, M. C. Davis, W. N. Pappano, N. H. Shubin, Sonic hedgehog function in 

chondrichthyan fins and the evolution of appendage patterning. Nature 445, 311 (2007). 

doi:10.1038/nature05436 Medline 

28. M. C. Davis, R. D. Dahn, N. H. Shubin, An autopodial-like pattern of Hox expression in the 

fins of a basal actinopterygian fish. Nature 447, 473 (2007). doi:10.1038/nature05838 

Medline 

29. R. Freitas, G. Zhang, M. J. Cohn, Biphasic Hoxd gene expression in shark paired fins reveals 

an ancient origin of the distal limb domain. PLoS ONE 2, e754 (2007). 

doi:10.1371/journal.pone.0000754 Medline 

30. J. M. Woltering, D. Duboule, The origin of digits: expression patterns versus regulatory 

mechanisms. Dev. Cell 18, 526 (2010). doi:10.1016/j.devcel.2010.04.002 Medline 

http://dx.doi.org/10.1038/nature01189
http://dx.doi.org/10.1038/nature01189
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=8898214&dopt=Abstract
http://dx.doi.org/10.1073/pnas.94.25.13695
http://dx.doi.org/10.1073/pnas.94.25.13695
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=8620844&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9043077&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9409670&dopt=Abstract
http://dx.doi.org/10.1016/j.ydbio.2007.07.023
http://dx.doi.org/10.1016/j.ydbio.2007.07.023
http://dx.doi.org/10.1016/j.mod.2005.06.012
http://dx.doi.org/10.1016/j.mod.2005.06.012
http://dx.doi.org/10.1016/j.bulm.2003.09.009
http://dx.doi.org/10.1016/j.bulm.2003.09.009
http://dx.doi.org/10.1016/j.devcel.2012.01.006
http://dx.doi.org/10.1016/j.devcel.2012.01.006
http://dx.doi.org/10.1038/nature05436
http://dx.doi.org/10.1038/nature05436
http://dx.doi.org/10.1038/nature05838
http://dx.doi.org/10.1038/nature05838
http://dx.doi.org/10.1371/journal.pone.0000754
http://dx.doi.org/10.1371/journal.pone.0000754
http://dx.doi.org/10.1016/j.devcel.2010.04.002
http://dx.doi.org/10.1016/j.devcel.2010.04.002


31. I. Schneider et al., Appendage expression driven by the Hoxd Global Control Region is an 

ancient gnathostome feature. Proc. Natl. Acad. Sci. U.S.A. 108, 12782 (2011). 

doi:10.1073/pnas.1109993108 Medline 

32. N. Shubin, C. Tabin, S. Carroll, Deep homology and the origins of evolutionary novelty. 

Nature 457, 818 (2009). doi:10.1038/nature07891 Medline 

33. M. A. Nieto, K. Patel, D. G. Wilkinson, In situ hybridization analysis of chick embryos in 

whole mount and tissue sections. Methods Cell Biol. 51, 219 (1996). doi:10.1016/S0091-

679X(08)60630-5 Medline 

34. B. Boehm et al., A landmark-free morphometric staging system for the mouse limb bud. 

Development 138, 1227 (2011). doi:10.1242/dev.057547 Medline 

35. www.vtk.org/ 

36. R. A. Barrio, C. Varea, J. L. Aragón, P. K. Maini, A two-dimensional numerical study of 

spatial pattern formation in interacting Turing systems. Bull. Math. Biol. 61, 483 (1999). 

doi:10.1006/bulm.1998.0093 Medline 

37. B. Boehm et al., The role of spatially controlled cell proliferation in limb bud 

morphogenesis. PLoS Biol. 8, e1000420 (2010). doi:10.1371/journal.pbio.1000420 

Medline 

38. C. Geuzaine, J. Remacle, Gmsh: A 3-D finite element mesh generator with built-in pre- and 

post-processing facilities. Int. J. Numer. Methods Eng. 79, 1309 (2009). 

doi:10.1002/nme.2579 

39. T. Glimm, J. Zhang, Y. Q. Shen, S. A. Newman, Reaction-diffusion systems and external 

morphogen gradients: the two-dimensional case, with an application to skeletal pattern 

formation. Bull. Math. Biol. 74, 666 (2012). doi:10.1007/s11538-011-9689-6 Medline 

40. P. K. Maini, in Developmental Patterning of the Vertebrate Limb (Plenum Press, New York, 

1991), pp. 161–163. 

41. P. K. Maini, D. L. Benson, J. A. Sherratt, Pattern formation in reaction diffusion models with 

spatially inhomogeneous diffusion coefficients. IMA J. Math. Appl. Med. Biol. 9, 197 

(1992). doi:10.1093/imammb/9.3.197 

42. L. Marjoram, C. Wright, Rapid differential transport of Nodal and Lefty on sulfated 

proteoglycan-rich extracellular matrix regulates left-right asymmetry in Xenopus. 

Development 138, 475 (2011). doi:10.1242/dev.056010 Medline 

43. J. D. Murray, Mathematical Biology (Springer, Berlin, 1993). 

44. P. Müller et al., Differential diffusivity of Nodal and Lefty underlies a reaction-diffusion 

patterning system. Science 336, 721 (2012). doi:10.1126/science.1221920 Medline 

45. H. Shoji, Y. Iwasa, Labyrinthine versus straight-striped patterns generated by two-

dimensional Turing systems. J. Theor. Biol. 237, 104 (2005). 

doi:10.1016/j.jtbi.2005.04.003 Medline 

46. H. Shoji, Y. Iwasa, A. Mochizuki, S. Kondo, Directionality of stripes formed by anisotropic 

reaction-diffusion models. J. Theor. Biol. 214, 549 (2002). doi:10.1006/jtbi.2001.2480 

Medline 

http://dx.doi.org/10.1073/pnas.1109993108
http://dx.doi.org/10.1073/pnas.1109993108
http://dx.doi.org/10.1038/nature07891
http://dx.doi.org/10.1038/nature07891
http://dx.doi.org/10.1016/S0091-679X(08)60630-5
http://dx.doi.org/10.1016/S0091-679X(08)60630-5
http://dx.doi.org/10.1016/S0091-679X(08)60630-5
http://dx.doi.org/10.1242/dev.057547
http://dx.doi.org/10.1242/dev.057547
http://www.vtk.org/
http://dx.doi.org/10.1006/bulm.1998.0093
http://dx.doi.org/10.1006/bulm.1998.0093
http://dx.doi.org/10.1371/journal.pbio.1000420
http://dx.doi.org/10.1371/journal.pbio.1000420
http://dx.doi.org/10.1002/nme.2579
http://dx.doi.org/10.1007/s11538-011-9689-6
http://dx.doi.org/10.1007/s11538-011-9689-6
http://dx.doi.org/10.1093/imammb/9.3.197
http://dx.doi.org/10.1242/dev.056010
http://dx.doi.org/10.1242/dev.056010
http://dx.doi.org/10.1126/science.1221920
http://dx.doi.org/10.1126/science.1221920
http://dx.doi.org/10.1016/j.jtbi.2005.04.003
http://dx.doi.org/10.1016/j.jtbi.2005.04.003
http://dx.doi.org/10.1006/jtbi.2001.2480
http://dx.doi.org/10.1006/jtbi.2001.2480



