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Text S1: Description of the tissue movement maps in Figure 4

Tissue movement maps were generated by varying the directionality and the
relative magnitude of the velocity vectors. A total of 9 maps (shown in Figure 4)
were generated by using three different sets of spline curves and three different
distributions of stiffness coefficients along the proximal-distal axis.

The three maps in the first row of Figure 4 (Map1, Map2, Map3) were ob-
tained by using a set of spline curves that defined velocity vector fields with
direction bias to the distal tip of the limb. The three maps of the second row
(Map4, Map5, Map6) were obtained using a set of spline curves that defined
velocity vectors that were progressively spreading-out more along the anterior-
posterior axis of the limb. Finally, the spline curves that were used to generate
the maps of the third row (Map7, Map8, Map9) defined a more asymmetric
velocity vector field with posterior vectors bending to the posterior part of the
limb and anterior vectors biased distally.

For each triangular mesh in the chronological sequence, edge stiffness coeffi-
cients were calculated using the formula:

αij =
1
lij
P (eij

x ) (1)

where lij is the length of the edge connecting the vertex i and the vertex j
and P (eij

x ) is a scaling function P calculated on the x coordinate of the edge
midpoint eij

x .
The three maps in the first column of Figure 4 (Map1,Map4,Map7) were

generated using an inverted sigmoid as the scaling function P :

P (x) =
1

(1 + e−Ks∗(−x+(mx−dx)))
(2)

where Ks is a constant defining the steepness of the sigmoid, mx is the maximum
x coordinate of the mesh and dx is a parameter used to translate the sigmoid
proximally. This scaling function defined lower stiffness values for edges that
were located distally, therefore allowing greater deformations on the distal part
of the limb mesh.

The three maps in the second column of Figure 4 (Map2,Map5,Map7) were
generated considering no change in stiffness coefficients along the proximal-distal
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axis (P (x) = 1).
Finally, the three maps in the third column of Figure 4 (Map3,Map6,Map9)

were generated using a sigmoid function P that was defined similarly to the
scaling function (2) as:

P (x) = 1 +
1

(1 + e−Ks∗(x−(mx−dx)))
(3)

This scaling function defined higher stiffness coefficients for edges located dis-
tally, therefore allowing greater deformations on the proximal part of the mesh.

We also performed simulations using exponential and linear scaling function
with similar monotonic behaviors to equations (2) and (4) and found similar
mesh deformations in the first case but almost no change in mesh deformation
from the constant fucntion (P (x) = 1) in the second case. This suggested that a
non-linear scaling of the stiffness was essential to obtain a substantial difference
in the mesh deformation.

The simulations that are shown in Figure 4 were performed using Ks = 0.05
and dx = 30 and similar values of Ks and dx showed little effect on the type of
final deformation that was obtained. In addition in all the cases we also specified
a greater stiffness for the part of the meshes correspondendt to the body. The
space unit was µm and the maximum PD length given by the last mesh in the
sequence was of 786µm.
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