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Turing’s theory of pattern formation is a universal model for self-organization, applicable to many
systems in physics, chemistry, and biology. Essential properties of a Turing system, such as the conditions
for the existence of patterns and the mechanisms of pattern selection, are well understood in small
networks. However, a general set of rules explaining how network topology determines fundamental
system properties and constraints has not been found. Here we provide a first general theory of Turing
network topology, which proves why three key features of a Turing system are directly determined by the
topology: the type of restrictions that apply to the diffusion rates, the robustness of the system, and the
phase relations of the molecular species.
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I. INTRODUCTION

In 1952, Alan Turing proposed a theory of bio-
logical morphogenesis to explain the emergence of spatial
organization in the embryo [1]. The influence of this
ground-breaking theory has been phenomenal, as it has
subsequently been invoked to explain patterning processes
in chemical reactions [2], nonlinear optical systems [3],
semiconductor nanostructures [4], galaxies [5], predator-
prey models in ecology [6], vegetation patterns [7], cardiac
arrhythmias [8], and even crime spots in cities [9]. Yet,
especially in the field for which Turing developed his ideas
—developmental biology—it still suffers from concerns
about its validity, which arose early on in its history.
Turing’s original model consisted of two molecular

species that would diffuse through the embryonic tissue
and chemically react with each other. He proved that, under
certain conditions, such a simple reaction-diffusion system
should be able to spontaneously create periodic patterns in
space. The idea that a self-organized symmetry breaking of
molecular concentrations would be driven by diffusion was
counterintuitive, as diffusion normally has the effect of

smoothing spatial heterogeneities and tends to generate
uniform distributions.
Doubts about the relevance of Turing’s theory were

compounded by the lack of conclusive evidence of their
existence in real-world examples for almost 40 years after he
proposed it. Analysis of simple Turing systems suggested
twomain reasonswhy theymay be hard to find in nature or to
create artificially. Firstly, in its original form, a Turing system
requires two species that diffuse at significantly different
rates [10], whereas, in reality, many species that might
conceivably form Turing patterns have very similar diffusion
rates. Secondly, there appeared to be only extremely
narrow ranges of the reaction parameters that would be
compatiblewith a Turing pattern. Achieving a patternwould,
therefore, require setting these parameters with unrealistic
precision [11]. This property seemed tomakeTuring patterns
an unlikely phenomenon and intrinsically unrobust.
A partial solution to these severe limitations has been

found experimentally. The first experimental confirmation
of the existence of Turing patterns, found in the chlorite–
iodide–malonic acid (CIMA) chemical reaction [12,13],
suggested a method to circumvent the diffusion constraints.
In the CIMA reaction, a color indicator was included to act
as a visual read-out of the chemical patterns produced. This
indicator bound reversibly to one of the reactants and
effectively slowed down its diffusion [2,14]. A refinement
of this method [15,16] has been followed in the design of
almost all new chemical systems producing Turing patterns
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[17] and inspired most of the theoretical efforts to relax the

diffusion constraints [18,19].
Recent years have seen a shift in interest from chemical

systems back to the biological problem for which Turing
conceived the idea—embryo development. In this context,
models of biological pattern formation that can bypass the
diffusion constraints have also been proposed. Again, these
models follow the design of the CIMA reaction, including
immobile cell receptors as part of the network to play the

role of the immobile color indicator [20–23]. This design,
shown schematically in Fig. 1, is only a partial solution
because the relaxation of the diffusion constraints is not
complete and because it requires a very specific topological
arrangement. Regarding the allegedly intrinsic lack of
robustness of Turing systems, early studies observed that
the volume of the parameter space varies greatly between
different models [24,25], but little is known about what
determines this property.
However, a recent computational study showed that

allowing more freedom to the interactions of the immobile
species with the rest of the network could result in greater
relaxation of the diffusion constraints [26]. This study
showed that, in networks of three and four species, with
only two diffusible species, it is possible to remove any
constraints to their diffusion rates, a novel class of Turing
networks that had not been found before. Further, the
computational exploration showed that the percentage of
networks with relaxed constraints was unexpectedly high.
This finding requires a mechanistic explanation and sug-
gests that central aspects of Turing networks have to be
clarified.
Hence, we decided to investigate the relationship

between the topology of a Turing network and its behavior
using tools from graph theory. This proved to be fruitful,
because we find that topology determines three fundamen-
tal properties of a Turing system illustrated in Fig. 1.
Firstly, we demonstrate how the topology determines the
diffusion constraints and the general method to relax or
even remove them completely. Secondly, we are able show
that Turing systems are not intrinsically unrobust because
they do not require unphysical adjustment of parameters.
Thirdly, our analysis allows us to resolve a question that,
surprisingly, has not been addressed before: What deter-
mines the spatial overlap of the species in a Turing pattern?
Again, we show that topology determines the spatial phases
of the species and, further, that it is possible to construct a
network with any desired pair of species overlapping in
space.
In addition, our theory can be extended to oscillatory

patterns and explains a new class of pseudopatterning
networks that we call “Turing filters.” The patterns gen-
erated by Turing filters do not have a characteristic wave-
length; instead, these networks amplify preexisting spatial
heterogeneities if their characteristic wavelength is smaller
than a critical threshold, thus acting like a low-pass filter.
Finally, we apply our theory to analyze experimental
Turing systems, relevant models of biological pattern
formation, and network designs proposed to genetically
engineer Turing systems in cells.
Overall, these results show that our graph-based theory

of Turing networks provides a unifying understanding of
fundamental properties of these systems and constitutes a
powerful aid to identify new self-organizing systems in
nature or create them artificially.

FIG. 1. Each panel illustrates a question about Turing systems
that is resolved through analyzing the topology of the underlying
network of interacting species. Namely, in a Turing system, how
does the topology determine (a) the constraints on diffusion rates,
(b) the size of the patterning parameter region, and (c) the phase
of each species? More specifically, each panel contains three
explicit networks with large differences in these properties. In all
panels, edges ended with an arrow and a bar represent activation
and inhibition, respectively. A wriggled arrow indicates that the
node corresponds to a diffusible species. The two-species system
illustrated in the left of (a) requires highly different diffusion rates
of u and v for a pattern to exist, whereas the CIMA reaction
schematic in the center can produce patterns with iodine (I−) and
chlorite (ClO−

2 ) diffusing at the same rate. Finally, the network on
the right produces patterns with no restriction on the diffusion
rates. In (b), we see three three-species models whose Turing
patterning parameter space are vastly different. The robustness of
a patterning system can be assessed by the volume of the
parameter sets compatible with reaction stability (shown in
yellow) and diffusion-driven instabilities (shown in orange).
For the three examples, the ratios of diffusion rates are the same,
and the axes show the strength of the feedbacks between species.
In (c), we present three networks and the prototypical patterns
that they would produce in one dimension. The species whose
concentrations are in phase are depicted in the same color.
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II. GRAPH THEORY FOR TURING SYSTEMS

A system of interacting species whose concentration
changes through local reactions and spatial diffusion can be
described by a set of reaction-diffusion equations:

∂ri
∂t ¼ fiðrÞ þ di∇2ri; i ¼ 1;…; N; ð1Þ

where riðx; tÞ, fi, and di ≥ 0 represent the concentrations,
reaction rates, and non-negative diffusion constants. The
homogeneous steady state is assumed to be stable, and
there is no flow of reactants outside a finite domain. The
existence of Turing patterns is demonstrated by analyzing
the evolution of the system under small perturbations,
which can be predicted from the linear approximation of
the reaction-diffusion equations [27]. This leads to an
eigenvalue problem that reduces the derivation of the
conditions for diffusion-driven instability to the analysis
of the zeroes of the characteristic polynomial PqðλÞ ¼
det½λI − ðJRðroÞ − q2DÞ�, where JRðr0Þ is the Jacobian of
the reaction term evaluated at equilibrium, and D is the
diffusion matrix. The eigenvalues λðqÞ are given by the
zeroes of PqðλÞ, and they determine the speed of growth or
decay of the periodic mode of wavelength 2π=q. The
pattern that emerges is a superposition of the modes that
grow, if there is any. For a system withN species, PqðλÞ is a
polynomial of degree N in λ:

PqðλÞ ¼ λN þ a1ðqÞλN−1 þ � � � þ aN−1ðqÞλþ aNðqÞ; ð2Þ

where the coefficients akðqÞ are functions of the kinetic
constants and the diffusion rates.
Thus, the conditions for diffusion-driven instabilities and

whether they lead to stationary or oscillatory patterns can
be obtained by analyzing the location of the zeroes of PqðλÞ
in the complex plane. In principle, this can be done
analytically using the Routh-Huwitz theorem [28]. In
practice, the conditions become intractable for networks
with more than three diffusible species. Alternatively, graph
theory provides tools that have been applied to the analysis
of reaction network properties like stability [29,30], oscil-
lations [31], and the detection of Turing bifurcations [32].
Building on this pioneering work, we introduce the
reaction-diffusion graph to recast the algebraic Turing
conditions in terms of the topology of the underlying
reaction-diffusion system.
The reaction-diffusion graph is a directed graph of N

nodes that follows closely the definition of the Coates
graph of a square matrix [33]. Since every node corre-
sponds to a species, these words will be used interchange-
ably. Intuitively, the reaction-diffusion graph reflects the
interactions between the species in the system. Let fij
denote the derivative of the reaction rate of the ith species
with respect to the jth species evaluated at equilibrium. The
reaction rates in Eq. (1) can be nonlinear functions (for

example, if the reactions follow Michaelis-Menten
kinetics), but the dynamics of the system near equilibrium
can be determined from their linear approximation. If fij is
not zero, it means that the jth species affects the reaction
rate of the ith species, and there will be an edge from node j
to node i with weight fij. According to this, if fii is not
zero, it means that the reaction rate of the ith species has a
decay or self-activation term, and we add an edge that starts
and ends in the corresponding node. These edges are called
“loops.” The end of an edge reflects the sign of the
interaction: an arrow for activation, a bar for inhibition,
and a dot if it is unspecified. In addition, if a species is
diffusible, we add a special type of loop represented by a
wriggled arrow to the corresponding node. The weight of a
diffusible loop is −q2di. This defines the reaction-diffusion
graph that can be associated to any reaction-diffusion
system. A detailed example of how to derive it from the
reaction Jacobian is given in Appendix A.
Next, we show how the reaction-diffusion graph can be

used to calculate the coefficients akðqÞ in PqðλÞ. To that
end, three basic graph-theoretical definitions are required:
(i) A cycle is a closed path of k edges that joins k different
nodes. It is said to be of length k, and its weight is simply
the product of its edges. (ii) A linear spanning subgraph of
k nodes (or l-subgraph, for short) is a set of disjoint cycles
that span them. It is said to be of size k, and its weight is the
product of the weights of its cycles and a factor (−1) for
each cycle. (iii) An induced subgraph is a subgraph formed
by k different nodes and all the edges between them, and it
is said to be of size k. Its complementary subgraph is the
subgraph induced by the N − k nodes that do not form part
of it (which will be denoted the complementary nodes).
An induced subgraph may contain several l-subgraphs
and its weight is given by the sum of all of them. By
these definitions, loops are cycles of length 1 and also l-
subgraphs of size 1 for the corresponding node. The weight
of an l-subgraph is positive if it is formed only by negative
cycles or contains an even number of positive cycles. In this
case, it is said to be a stabilizing l-subgraph, whereas, if the
weight is negative, it is destabilizing. Examples to illustrate
the following definitions are given in Appendix A.
Importantly, the coefficient akðqÞ of PqðλÞ is given by

the sum of all the l-subgraphs of size k. This central result
can be derived using the Laplace expansion of the char-
acteristic polynomial [34] and the Coates-Harary formula
for the determinant [35,36] [see the derivation of Eq. (A4)
in Appendix A]. The calculation of the coefficients of
PqðλÞ is facilitated by the introduction of a symbolic
notation for cycles. Intuitively, a loop at node i is
represented by ; a cycle of length 2 between nodes i

and j is represented by ; a cycle of length 3 spanning

nodes i, j, and k by ▵
ijk
; a cycle of length 4 spanning nodes

i;…; l by □
i…l

; and so on. A diffusive loop at the ith node is
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represented by . The calculation of akðqÞ for a three-
node topology is shown in Fig. 2 and more in detail in

Appendix B for a four-node topology.
The coefficients akðqÞ are then polynomials in q made of

three types of contributions: (1) subgraphs formed only by
reaction cycles, that will be referred to as lR-subgraphs, and
form the independent termakð0Þ; (2)mixed subgraphs formed
by (less than k) diffusive loops and nonoverlapping reaction
cycles, which will be referred to as lRD-subgraphs and form
the terms of degree smaller than q2k in akðqÞ; (3) purely
diffusive subgraphs, formed by combinations of k different
diffusive loops, that form the terms of degree q2k in akðqÞ.
The coefficients of PqðλÞ are important because sim-

plified conditions for diffusion-driven instabilities can be
obtained in terms of their signs. The Routh-Hurwitz
theorem, conversely, is general but even for moderately
sized networks provides very little analytical insight [28].
A comprehensive discussion of the derivation and scope of
the following simplified conditions is given in Sec. I of the
Supplemental Material [37].
A Turing system must be stable without diffusion, which

requires all the coefficients akðqÞ to be positive for q ¼ 0.
Hence, akð0Þ > 0 for k ¼ 1;…; N is a necessary condition
for stability and, conversely, akðqÞ < 0 for some k is a
sufficient condition for diffusion-driven instabilities.
Necessary conditions for the emergence of stationary
Turing patterns can be derived in terms of the sign of aNðqÞ:

∃q > 0; ∀ k < Nj akðqÞ>0aNðqÞ<0 ⇐ stationary: ð3Þ

For oscillatory patterns, a similar condition can be derived in
terms of ak<NðqÞ, but it is generally only sufficient [31,38]:

∃q > 0; ∃k < Nj akðqÞ<0aNðqÞ>0 ⇒ oscillatory: ð4Þ

Two important results follow from the previous develop-
ments. First, the topology of a reaction-diffusion system,
understood as the distribution of cycles and diffusion loops,
determines exclusively the requirements for the existence of
Turing patterns, since the coefficients akðqÞ are functions of
l-subgraphs only. Therefore, the existence of Turing patterns
imposes constraints on the relative weights of cycles, rather
than individual kinetic parameters. Second, a Turing system
must have a destabilizing module, i.e., an induced subgraph
in which the destabilizing lR-subgraphs outweigh the
stabilizing lR-subgraphs. Typically, this condition requires
a set of nodes linked by a positive cycle (highlighted in red in
the rest of the text) that outweighs any other stabilizing
lR-subgraphs contained in their induced subgraph. If a
network does not a have destabilizing module, akðqÞ are
monotonically increasing functions of q, and the Turing
conditions cannot be met. This is true for all Turing systems,
except a small set of oscillatory networks that do not have a
positive cycle. This constitutes the generalization of the
requirement of a self-activator in two-node Turing networks.
A rigorous proof of these results is given in Sec. II of the
Supplemental Material [37]. Next, we use this graph-based
framework to reveal the connection between the topology of
a reaction-diffusion system and diffusion constraints, robust-
ness, and pattern phases.

III. TOPOLOGY AND THE SOURCE OF
DIFFUSION CONSTRAINTS

In a previous work, we developed a computational
procedure to obtain an exhaustive list of three- and four-
node networks with the minimal number of edges that can
generate stationary Turing patterns [26]. The analysis
revealed that three-node and four-node networks with
two diffusible nodes could be classified into three types
according to the diffusion constraints for the generation of
Turing patterns. Defining the ratio of the diffusion rate of
the diffusible species outside the destabilizing module to
the diffusion rate of the species in it as d, and p as the space
of kinetic parameters compatible with Turing patterns, the
constraints for each type can be stated as

Type I∶∀p; d > 1

Type II∶ ∃p; d ¼ 1

Type III∶ ∀p; d > 0: ð5Þ
Surprisingly, we found that there are as many three-node
networks with one immobile reactant of type II and type III

FIG. 2. (a) The reaction-diffusion graph of a three-species
Turing system. Every edge is a nonzero entry of the reaction
Jacobian, represented by fij. Wriggled arrows denote that the
species is diffusible. Symbolic notation for its four reaction cycles
is shown below: a loop at w; cycles of length 2 between u and v
and between v and w; and a cycle of length 3 between u, w, and v.
(b)–(d) Calculation of akðqÞ for k ¼ 1, 2, 3, given by the sum of
all l-subgraphs of size 1,2,3, respectively. Every contribution is
shown in the upper row using a symbolic graph notation, with the
corresponding l-subgraph highlighted in black immediately
below.

DIEGO, MARCON, MÜLLER, and SHARPE PHYS. REV. X 8, 021071 (2018)

021071-4



as of type I, whereas the four-node networks with two
immobile reactants of type III outnumber the networks of
type I and type II. In other words, against the widely held
belief, Turing networks with mild or no diffusion con-
straints are very common. Here, we demonstrate how the
topology of a network explains these results and prove that
the classification can be extended to general networks,
regardless of the network size or the number of diffusible
species.
According to the condition for Turing instability, aNðqÞ

must cross zero and become negative for some q > 0.
Decartes’s rule of signs provides an upper bound for the
number of real positive zeros of a real polynomial [39].
Particularly, a polynomial with only non-negative coeffi-
cients cannot have real positive zeros. All the independent
terms akð0Þ must be positive, according to the stability
condition. The purely diffusive terms of akðqÞ, if present,
are also strictly positive for q > 0. It then follows that
aNðqÞ must have a negative coefficient, and the negative
coefficient must lie at some intermediate degree in q2. This
is a necessary condition for stationary Turing instabilities.
In a network in which all the species diffuse, this is only

possible with differential diffusivity. An algebraic proof
of this well-known result is given in Sec. VI of the
Supplemental Material [37], but it does not reveal the
source of the requirement and how it can be weakened. To
that end, it is necessary to examine the topology of the
network.
The coefficient of degree 2m in aNðqÞ, as shown in

Eq. (A4), is the sum of all mixed lRD-subgraphs formed by
m diffusive loops and an lR-subgraph that spans the other
N −m nodes of the network. Importantly, each of these
lR-subgraphs of size N −m contributes also to the coef-
ficient aN−mð0Þ of aN−mðqÞ. For example, in the topology
shown in Fig. 2 the coefficient a3ðqÞ is

ð6Þ

Thus, the coefficient of degree q2 in a3ðqÞ contains
and , which are all the lR-subgraphs that form the
independent term a2ð0Þ in a2ðqÞ. Likewise, the coefficient
of degree q4 in a3ðqÞ contains , which is the only loop
forming a1ð0Þ in a1ðqÞ. This gives PqðλÞ its nested
structure:

ð7Þ

Since stability imposes that akð0Þ > 0, the stabilizing
subgraphs must outweigh the destabilizing subgraphs of
size k. It follows that, for any of the coefficients of
intermediate degree in aNðqÞ to be negative, the diffusion

loops complementary to the destabilizing lR-subgraphs
have to compensate for this difference. Thus, the differ-
ential diffusion requirement for Turing instabilities stems
from Decartes’s rule of signs. To illustrate the relationship
explicitly in the network from Fig. 2, let the induced
subgraph of u and v be the destabilizing module, and the
cycle of length 2 between them the only positive cycle.
Then, only the coefficient of degree q2 in a3ðqÞ can be
negative. Imposing this and assuming for simplicity that the
diffusion rates of the nodes in the destabilizing module (u
and v) are equal, the constraint on the diffusion ratio

takes the following form:

ð8Þ

Two observations about the diffusion constraints are in
order. First, the constraints on diffusion rates that stem from
Decartes’s rule are necessary for the existence of Turing
patterns, but not sufficient. If the necessary ratio is set, the
sufficient conditions are obtained, imposing that aNðqÞ
turns negative, which results in additional requirements for
the kinetic parameters but not for the diffusion rates.
Second, the nested structure of the characteristic polyno-
mial, combined with Decartes’s rule, force that at least one
species outside the destabilizing module has a larger
diffusion rate than the species that induce it, and never
the other way around. This is the generalization of the
requirement of differential diffusion in two-node networks.
In larger networks, the role of the activator and inhibitor
cannot be assigned to individual species, but to network
subgraphs. Importantly, the previous argument carries over
for general networks of any size but depends on the
assumption that all species diffuse. Each coefficient
akð0Þ is formed by all the reaction lR-subgraphs of size
k. If all species diffuse, each lR-subgraph in akð0Þ can be
coupled to m diffusive loops of complementary nodes to
form a mixed lRD-subgraph of size kþm that contributes
to the coefficient of degree 2m in akþmðqÞ. Thus, the nested
structure of the characteristic polynomial, from which the
diffusion constraints stem, is a general property of networks
in which all species diffuse. Because of this, all networks in
which all species diffuse belong to the type I class.

IV. RELAXATION OF DIFFUSION CONSTRAINTS

In networks with immobile species, the nested structure
of the characteristic polynomial does not necessarily hold.
This property is lost if there is at least one lR-subgraph with
a complementary node that is immobile. Assuming that this
subgraph is of size k, it will contribute to akð0Þ, but it will
not contribute to aNðqÞ. Particularly, it will be missing from
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the coefficient of degree 2m in aNðqÞ formed by products
of lR-subgraphs of size k and m ¼ N − k diffusion loops.
If the missing subgraph is stabilizing and of the same size
as the destabilizing module, the requirements on the
diffusion rates stemming from Decartes’s rule are weak-
ened. The destabilizing module can outweigh the remain-
ing subgraphs and make the coefficient of degree 2m in
aNðqÞ negative, even if the diffusion loops of its comple-
mentary nodes are equal or smaller than its own. In this
way, the necessary condition of differential diffusivity is
weakened.
By the same mechanism, the stabilizing influence of

subgraphs of smaller size than the destabilizing module
might vanish. This would be reflected in the disappearance
of terms of degree higher than 2m in aNðqÞ, which in turn
facilitates the fulfillment of the sufficient condition for the
existence of Turing patterns.
This is the principle that underlies the relaxation of

diffusion constraints and the associated classification of
Turing networks. The precise topological characterization
of each type of Turing system is given in Table I.
The different Turing types can also be distinguished

easily by the algebraic form of the characteristic poly-
nomial. In type III networks, the destabilizing module is the
only contributor to the leading term in aNðqÞ. Hence, for all
modes with wave number q above a certain threshold,
aNðqÞ turns negative and the system is unstable independ-
ently of the diffusion rates. Both the necessary condition
derived from Decartes’s rule and the sufficient condition
aNðqÞ < 0 are guaranteed by the topology. There are two
configurations that result in a type II network. In the first
configuration, the destabilizing module is the only con-
tributor of its size to a coefficient in aNðqÞ, but there are
stabilizing subgraphs of smaller size that contribute to
coefficients of higher degree. It follows that the necessary
condition is guaranteed by the topology, but the sufficient
condition still involves the diffusion rates. In the second
configuration of type II networks, the destabilizing module
is not the only contributor of its size to aNðqÞ, but at least
one stabilizing subgraph of the same size is missing. Thus,
the necessary condition is not guaranteed by the topology,
but it can be fulfilled without differential diffusion.
Whether there are terms of higher degree or not determines
if the sufficient condition is satisfied automatically or
if it imposes additional requirements on the kinetic
rates. In type I networks, all subgraphs of the same size
as the destabilizing module contribute to aNðqÞ. Hence, the
necessary condition imposes differential diffusion. Again,

if there are coefficients of higher degree, they further
restrict the space of parameters compatible with Turing
instability.
The principle for the relaxation of diffusion constraints is

illustrated in Fig. 3. Setting one node at a time as immobile
in the minimal topology of Fig. 2 results in a Turing
network of each type according to the diffusion constraints.
If the subgraph induced by u and v is the destabilizing
module and v is assumed to be immobile, the network
shown in Fig. 3(a) is obtained. Then, the coefficient a3ðqÞ
of Eq. (6) is reduced to

ð9Þ

Hence, the network is still a type I Turing system limited by
the constraint given in Eq. (8). The diffusion rate of w must
be bigger than that of u; otherwise, the coefficient of degree
q2 cannot be negative. If this occurs, the sufficient con-
dition a3ðqÞ is fulfilled automatically for sufficiently large
wave numbers. Conversely, the same topology becomes the
type II network shown in Fig. 3(b) if the subgraph induced
by w and v is the destabilizing module, and w is assumed to
be immobile. Then, the coefficient a3ðqÞ is

TABLE I. Topological features of Turing networks.

Type I All stabilizing lR-subgraphs of the same size as the destabilizing module have all their complementary nodes diffusible.

Type II At least one stabilizing lR-subgraph of the same size as the destabilizing module has an immobile complementary node.

Type III The destabilizing module is the lR-subgraph of smallest size that has all its complementary nodes diffusible.

FIG. 3. (a)–(c) Permutation of the immobile node in the
topology of Fig. 2 results in a Turing network of each type. In
each panel, stability and instability requirements are shown on the
left, with diffusion constraints on the right. (d) Patterns and
dispersion relationships of type I, II, III are qualitatively similar.
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ð10Þ

The destabilizing module is the only contributing term to the
coefficient of degree 2 in a3ðqÞ, and the necessary condition
that stems from Decartes’s rule is fulfilled automatically and
independently of the diffusion ratio d. Because there is a
coefficient of larger degree in q, fulfillment of the sufficient
condition a3ðqÞ < 0 involves the diffusion ratio, but as
expected froma type II network, it can be satisfiedwithd ¼ 1.
Finally, the topology of Fig. 2 is transformed into the

type III network of Fig. 3(c), assuming that the subgraph
induced by u and v is the destabilizing module and that u is
not diffusible. In this case, the destabilizing module is the
only contributor to the leading coefficient in a3ðqÞ:

ð11Þ

Hence, the topology guarantees the fulfillment of both the
necessary and the sufficient conditions for the existence of
Turing patterns, independently of the diffusion rates.
The relaxation principle operating in the CIMA chemical

reaction [2,15] and several models of biological patterning
networks from the literature [19–21,23,40] are analyzed in
Appendix D. The power of the graph-based framework to
analyze more complex systems is illustrated in a four-node
and even a ten-node network in Appendixes C and D;
additional examples of nonminimal networks are analyzed
in Sec. III of the Supplemental Material [37].
Understanding the topological mechanism that underlies

the relaxation of diffusion constraints facilitates the design of
Turing networks. Relaxation occurs if at least one stabilizing
lR-subgraph of the same size as the destabilizingmodule has
at least one complementary node that is immobile. The
immobile node necessarily belongs to the destabilizing
module, since its complementary nodesmust all be diffusible.
It follows that setting as immobile a node that is comple-
mentary to several stabilizing cycles is an efficient way to
relax the diffusion constraints. Likewise, asmore nodes of the
destabilizing module are assumed to be immobile, it is more
likely that subgraphs of the network lose their stabilizing
influence and that the diffusion constraints are weakened.
This is the reason why, in larger networks, which can have
larger destabilizing modules that accommodate more immo-
bile nodes, the fraction of type II and type III networks
increases, as itwas observed inRef. [26] for networks of three
and four nodes. In this way, the present theory explains this
finding and predicts that this trend should increase for larger
and more realistic networks.

V. TURING FILTERS AND OSCILLATORY
TURING NETWORKS

The extreme case of Turing networks inwhich all nodes of
the destabilizing module are immobile deserves special
attention. We previously discovered that these networks

are all type III [26]. Here, we demonstratewhy their dynamic
behavior is qualitatively different from standard Turing
networks: The wavelength of the emergent pattern is not
determined by the network, but by the external perturbation.
The reason is that the dispersion relationship does not

have a peak that determines the pattern wavelength. Instead,
the maximum eigenvalue grows monotonically from a
negative value at q ¼ 0 and tends asymptotically to a
maximum positive value for large wave numbers. The proof
of this result is given in Sec. IVof the SupplementalMaterial
[37] using Rouche’s theorem, and a network of this kind is
shown in Fig. 4(a). Thus, modes with a wave number below
the critical value are not amplified, whereas all the modes
with a much larger wave number grow with comparable
speeds. Therefore, the emergent patterns do not have a
characteristic wavelength determined by the network.
Instead, the initial perturbation that kicks the system out
of the homogeneous equilibrium is what determines the
pattern that emerges. If the initial perturbation has a spatial
structure with a wavelength smaller than the critical value,
the system amplifies it to form a stationary pattern with the
same spatial structure. Conversely, an initial prepattern with
wavelength above the critical value is not amplified. If the
homogeneous state is driven out of equilibrium by a low
amplitude white noise, all the modes present in the pertur-
bation grow. In this scenario, the modes that grow faster are
those with infinitely small wavelength and, for this reason,
the system evolves to form a stationary salt-and-pepper
pattern. In this sense, the type III networks in this subset are
not genuine spontaneous pattern-forming systems, and they
could rather be called Turing filters, since they behave as
low-pass filters. Simulations showing the amplification of
different prepatterns are shown in Fig. 4(a).
The results obtained so far have focused on stationary

Turing patterns. However, the analysis can be extended to
oscillatory Turing patterns with only minor modifications.
Indeed, the classification according to diffusion constraints
and the topological arrangements that distinguish the differ-
ent types carries over for most networks generating oscil-
latory Turing patterns. These are the networks in which the
instability occurs when a coefficient ak<NðqÞ turns negative,
while aNðqÞ remains positive, like the network shown in
Fig. 4(b). The subgraph that causes the instability spans
k < N nodes. An important difference is that the conditions
for the existence of oscillatory Turing patterns are sufficient
but not necessary. This means that not all networks capable
of generating oscillatory Turing patterns are covered. The
networks left out of the analysis are, however, rare and
subject to severe constraints in their kinetic parameters.
Interestingly, they can be built without any positive cycle
and do not require differential diffusivity (see Sec. I of the
Supplemental Material [37] for an expanded discussion).
Oscillatory Turing filters also exist and like their stationary
counterparts are characterized by having a destabilizing
module composed of nondiffusible nodes. The design
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proposed in Ref. [40] to engineer a synthetic Turing system
is a network of this class, as it is shown in Appendix D 4.
Oscillatory Turing filters have less patterning power than
stationary Turing filters: Noisy initial conditions or stochas-
tic dynamics combined with oscillations gradually degrade
the initial prepattern and evolve to form an oscillating salt-
and-pepper pattern of large amplitude. However, if the
system follows deterministic dynamics, the amplification
of input perturbations with a characteristic wavelength that
falls in the flat region of the dispersion relationship is
comparable to the amplification of salt-and-pepper patterns.
In this instance, oscillatory Turing filters can produce a
pattern that results from the oscillatory coupling of several
modes, and rich dynamics can ensue.

VI. TOPOLOGY AND ROBUSTNESS

A common criticism about Turing systems is that they
are not robust, because small parameter variations impair
their patterning potential. This feature is related to what has

been referred to as the fine-tuning problem, noting that
Turing systems require either unrealistic separation of
diffusion scales or unphysical adjustment of kinetic param-
eters [11]. Generally, it is not known what determines the
size of the parameter space of a Turing system. Murray
investigated the robustness of several two-node Turing
models and found large variations in the size of their Turing
space [25], i.e., the combinations of parameters that can
result in pattern formation. Several biologically motivated
models have shown that the size of the parameter space of
Turing systems based on receptor-ligand interaction mas-
sively increases when the diffusion of the receptor is
restricted to single cells [20,41] or is assumed to be
immobile [21,23]. Previously, we made a computational
screen to find all minimal Turing networks of three and four
nodes with two diffusible species [26]. The calculation of
the size of the Turing parameter space revealed a trade-off
between stability and instability conditions. More recently,
a similar approach was used in Ref. [42] to numerically
assess the robustness of two-node and three-node networks.
These observations can be partially understood in the
framework of our theory. All minimal Turing networks
of a given number of nodes can be grouped into a limited
number of topological families. A topological family has a
unique and minimal distribution of cycles that allows us to
build networks that can be stable without diffusion and that
can undergo diffusion-driven instabilities.
For example, the 21 nonisomorphic Turing networks of

three nodes found in our previous computational screen
[26] can be grouped into just seven topological families
shown in Fig. 5(a). Similarly, we found 64 nonisomorphic
Turing networks of four nodes that can be classified into the
12 topological families that are shown in Sec. VII of the
Supplemental Material [37] (together with a conjecture
about larger minimal topologies). Crucially, all networks
that belong to the same topological family have an identical
stability space. Furthermore, the size of the stability space
of different topological families varies markedly, as shown
in Fig. 5(b). The reason is that the stability space is formed
by the intersection of the hypersurfaces defined by the
Routh-Hurwitz stability conditions. Importantly, these
conditions depend only on the network cycles and
lR-subgraphs that they form. Because of this, and restrict-
ing the analysis to systems in which the strength of the
interactions between species does not depend on the steady
state, the stability space is determined exclusively by the
topological family of the network. The Turing space, in
turn, is the fraction of the stability space that is compatible
with diffusion-driven instabilities and is determined by the
diffusion rates. The key variable that determines this
fraction is the ratio between the diffusion rates of the
nodes that induce the destabilizing module and its com-
plementary nodes. If all nodes diffuse and this ratio tends to
1, the volume of Turing space tends to 0. This is precisely
the source of the fine-tuning problem: If realistic

FIG. 4. Permutation of the immobile node in a three-node
topology results in (a) a Turing filter because the destabilizing
module is formed by a single immobile node. The simulations
show the amplification of noisy, circular, and checkerboard initial
conditions. The dispersion relationship, saturating at large wave
numbers, determines the threshold for pattern amplification.
(b) An oscillatory network of type I. The time points of the
simulation show a spatially stationary and temporally oscillatory
pattern. The real part of the eigenvalue (the dotted line in the
dispersion relationship) determines the wavelength and the
complex part (not shown) of the time period. In both panels,
stability and instability requirements are shown on the left, with
diffusion constraints on the right.
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differences in diffusion rates are assumed, the volume of
Turing space becomes infinitesimal. The cause of this
behavior is then related to the cause of diffusion con-
straints: It stems from Decartes’s rule and the opposite
requirements of stability without diffusion and instability
with diffusion. These two requirements can be combined in
a particularly simple form if the destabilizing module lins

does not overlap with the stabilizing subgraphs of the same
size (lst

1 ;…;lst
m):

dN−k >
jlst

1 j þ…þ jlst
mj

jlinsj > 1; ð12Þ

where d is the ratio between the diffusion of nodes
complementary to the destabilizing module and the nodes
that induce it, and k is the size of the destabilizing module.
Note that, as d tends to 1, the space of reaction parameters
that can fulfill both inequalities vanishes. However, as
demonstrated before, this behavior depends on the
assumption that all nodes diffuse. If there are nodes in
the destabilizing module that are immobile, the second
inequality does not apply, and networks of different types
can be obtained. Even if all the nodes that diffuse do so at
the same rate, the Turing space does not vanish, as shown in
Fig. 5(c) for a particular topological family. Thus, the
robustness of a Turing network results from a combination
of two factors: (i) the topological family, which determines

the volume of the stability space, and (ii) the type given by
which nodes are immobile, which determines the Turing
space. This illustrates the power of analyzing Turing
systems through a topological lens—it demonstrates that
the fine-tuning problem is not intrinsic to Turing systems, it
reveals its source, and it shows how to bypass it.

VII. TOPOLOGY AND PATTERN PHASES

The original two-node network postulated by Turing can
be implemented in two different forms, typically referred
to as “activator-inhibitor” and “substrate-depleted” models
[43]. The activator-inhibitor network forms a periodic
pattern in which the concentrations of the two species are
in phase, whereas, in the substrate-depleted network, they
are out of phase. Both networks have the same topology, as
depicted in Fig. 6: a node with a positive loop and a node
with a negative loop connected by negative cycle of length 2,
but with the signs of the edges flipped. Thus, the two
networks have the same distribution of cycles and cycle
signs but differ in the signs of their edges, which leads to the
difference in patterns. For both networks, the analytic
expression of the conditions for Turing instability and the
dispersion relationship are identical, so that the wavelength
and speed of growth of the patterns generated are also
identical, provided that the kinetic parameters have the same
absolute values [44]. The analysis of Turing networks

FIG. 5. (a) Seven topological families contain all minimal three-node Turing networks. For each family, the characteristic distribution
of cycles and lR-subgraphs that form akð0Þ is shown at the bottom. (b) Volume of the stability space of the three-node topological
families. For all Turing networks within a family, the stability space is the same. (c) Variation of the Turing space for TD networks when
all nodes diffuse (in the top left panel, fine-tuning of kinetic parameters is necessary) or one of the nodes is immobile (for the rest, fine-
tuning is not required and d ¼ 1.5 in all cases). Volumes of stability and Turing spaces are calculated following the method detailed in
Appendix E.
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through the graph-theoretical lens shows how these proper-
ties carry over for networks of any number of nodes and,
particularly, how topology governs the pattern phases and
which modifications result in the phase-switch of a species.
First, networks that have the same topology and the same

distribution of cycle signs are restricted to identical restrictions
to requirements for the existence of diffusion-driven insta-
bilities and generate patterns with the same wavelength and
growing speed. The reason for this is that the conditions for
stability without diffusion and for Turing instability depend
exclusively on l-subgraphs and cycles, rather than individual
kinetic parameters. Thus, kinetic parameters and diffusion
rates are subjected to the same restrictions for the existence of
Turing patterns. For the same reason, the dispersion relation-
ship of these networks is identical, so that the dynamics and
wavelength of the pattern that they generate are the same.

Second, N species can be grouped in two phases in
exactly 2N−1 different ways. This is, therefore, the number
of different Turing patterns that N species could hypo-
thetically form. For example, a three-node network can
form 4 ¼ 23−1 patterns: one pattern with all species in
phase and three patterns with one of the species being out of
phase with the rest. A four-node network can form
8 ¼ 24−1 patterns: one with all species in phase, four with
one species being out of phase with the rest, and three with
a pair of the species out of phase with the other pair. The
central finding is that each of these 2N−1 patterns is
produced by one of the 2N−1 Turing networks that share
the same topology and cycle signs, but differ in the sign of
individual edges. Given a network that produces a pattern
with a certain distribution of species amongst the two
phases, it is possible to construct a network that produces

FIG. 6. (a) The concentration of any pair of species in a Turing pattern can be in phase or out of phase. (b) There are two two-node
Turing networks, the activator-inhibitor network (top), where the species are in phase, and the substrate-depleted network (bottom),
where the species are out of phase. In general, there are 2N−1 ways to group N species in two phases of a Turing pattern. An N-node
topology allows us to construct 2N−1 different Turing networks by switching the signs of the incoming and outgoing edges of one
particular node at a time, leaving the cycle signs invariant. Each network makes one of the patterns. Grey cursors indicate that the signs
of the edges going in and out of a node have been switched, producing a change in phase. Nodes with the same color are in the same
phase. (c),(d) Illustration of this principle for example topologies ofN ¼ 3 andN ¼ 4 nodes, which generate P ¼ 4 and P ¼ 8 networks
and patterns.
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the same pattern—but with a single species switched to the
other phase—by flipping the signs of all the edges coming
in and out of the corresponding node. Note that this
transformation leaves invariant the sign of all the cycles
passing through the node, including the loops. Applying
the same transformation to several nodes at a time, the
associated species switch to the opposite phase. There are
exactly 2N−1 different networks that can be constructed in
this way, each generating one of the 2N−1 possible Turing
patterns. The formal proof in terms of similarity trans-
formations of the Jacobian of the reaction-diffusion equa-
tions is given in Sec. V of the Supplemental Material [37].
Intuitively, it can be understood that the effect of switching
the signs of the edges going in and out of a node is
equivalent to inverting the concentration of this node.
In addition, we find that examination of the topology of a

Turing network also allows us to determine the phases of
the reactants (if pattern formation occurs in the regime that
can be predicted by linear stability analysis). Typically, this
is done by calculating numerically the eigenvectors of the
linearized system for a particular choice of parameter
values. Conversely, the heuristic method that we detail
in Appendix F is based on examining the topology and is
independent of parameter values, thus providing a more
intuitive understanding of Turing dynamics.

VIII. DISCUSSION

In recent years, Turing’s theory of pattern formation has
received renewed attention because of the increasing
evidence of its role in biology, chemistry, and physics.
The effects of domain growth [45], complex boundary
conditions [46], spatial variation of parameters [47], pattern
selection [48], behavior in lattices [49,50], and even
centrifugal forces [51] in Turing systems have been studied
theoretically. In contrast, the role of the topology under-
lying a Turing system in shaping its properties has
remained largely unexplored. In this paper, we developed
a graph-theoretical framework to study this relationship.
We find that topology allows us to solve two longstanding
questions about Turing systems and to discover a new
property.
Firstly, we analyzed the requirement of differential

diffusion. For a long time, it was believed that Turing
systems were severely restricted because of this require-
ment, and the only known way to relax this limitation was
to add an immobile substrate to trap the self-activating
species. This method was discovered serendipitously in the
CIMA chemical reaction [17], and the analogous biological
principle, known as hindered diffusion [52], biased the
search for molecules that could act on a Turing species in
development, since the candidate networks were assumed
to have to conform to this very specific arrangement. The
present theory demonstrates how other arrangements result
in greater relaxation and reveals which species must be
assumed to be immobile to achieve it. Further, it shows that

in larger Turing networks with immobile species, the
requirement for differential diffusivity should be the
exception, rather than the rule.
Even though relaxation involves necessarily immobile

species, this is not an unrealistic limitation. In a biological
context, it could be implemented by transcription factors or
membrane receptors (which are the majority of proteins
involved in gene regulation and do not leave individual
cells) playing the role of immobile species and interacting
with diffusible ligands (which can cross the cellular
membrane and diffuse in the extracellular matrix) playing
the role of diffusible species. Likewise, in a chemical
reaction, any reactant that is bound or trapped in the
medium where the reaction occurs (like starch in the gel
of the CIMA reaction [2]) could play the role of an
immobile species and does not need to be inert to the rest
of the reactants, which affords a design flexibility that so far
has not been exploited. Hence, our theory suggests many
plausible alternatives for Turing patterns to play a role in
biology and chemistry, and it suggests that they could also
be more pervasive than previously thought in other areas.
Secondly, we addressed the question of whether Turing

systems are intrinsically unrobust, because of the observation
that, inmostmodels,unless thekineticparametersareadjusted
with extremely high precision, the patterning power is lost.
Our analysis shows that specific topological families standout
for their large stability spaces, which, combined with the
method to relax diffusion constraints, results in networkswith
large Turing spaces. This proves that Turing systems do not
require unphysical adjustment kinetic parameters or diffusion
rates and can, in fact, be very robust.
Finally, we turned to the investigation of the spatial

distribution of the species in a Turing pattern. It is well
known that the two classical two-node Turing networks, the
activator-inhibitor and the substrate-depleted networks,
form patterns with the species in phase and out of phase,
respectively [43]. The graph-based analysis reveals the
generalization of this property for more complex networks:
Examination of the topology of a network suffices to
predict the compositions of the two phases of a Turing
pattern. Further, we discover that it is possible to modify a
network to produce a pattern with any desired combination
of species in the same phase. This discovery should be of
practical interest to bioengineers, since it opens the door to
design synthetic tissues with targeted combinations of
genes coexpressed.
Thus, from a theoretical perspective, the present theory

provides a unifying view of Turing systems that clarifies
poorly understood properties, but also reveals new avenues
of inquiry. As an example, in Appendix C, we show how
the topological framework greatly facilitates the design and
analysis of a Turing system with ten species. Interestingly,
preliminary exploration of its behavior suggests that new
dynamical phenomena may be intrinsic to Turing systems
of a large size.
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From a more applied perspective, the present theory
should also be of use. In experimental systems, it is easier
to obtain reliable information about the topology of a
network than precise values of reaction rates or diffusion
constants. This is especially true for gene and protein
networks in biology, because these parameters are gener-
ally estimated from in vitro experiments, and yet the real
effective values in vivo are likely to be quite different.
Consequently, a theory that allows us to determine proper-
ties of a Turing system from its topology ideally comple-
ments quantitative measurements to obtain novel insights
into patterning systems and to infer circuits underlying
biological patterns.
Finally, the present work could help to answer what is

perhaps the most relevant question about Turing systems: Do
they actually play an important role in biological develop-
ment? Strong evidence suggests that this is the case during
earlypatterningof thepalate [53], limb[26], hair follicles [54],
insect corneae [55], fish [56] and lizard [57] skins, etc. This
evidence is, however, not indisputable. There have beenmany
attempts to engineer synthetic networks in a field of cells to
produce a Turing pattern of gene expression, but none has
succeeded in providing the definitive experimental demon-
stration[58]. Inpart, thedifficultystemsfromthefact thatmost
efforts have followed the designs of classic Turing networks
[40]. Here, we provided theoretical tools to widen the
repertoireofdesigns that couldbe implementedand toanalyze
their robustness and constraints. This should aid us to finally
implement a Turing network in biological cells and prove
conclusively that they can, indeed, use Turing patterns to self-
organize.
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APPENDIX A: THE
REACTION-DIFFUSION GRAPH

The reaction-diffusion graph of a reaction-diffusion
system is a weighted digraph associated to the matrix
FRDðqÞ ¼ JRðr0Þ − q2D, obtained from the linear approxi-
mation of the reaction-diffusion equations. The definition
of the reaction-diffusion graph, denoted asG½FRD�, is based
on the definition of the Coates graph of a matrix, whose
introduction has been attributed to Coates [35]. Briefly,

G½FRD� is a weighted directed graph of N nodes that has an
edge from the jth node to the ith node if the entry JRðroÞij
is nonzero. In addition, for each nonzero entry in D, a
special type of edge represented by a wriggled arrow is
added to the corresponding diffusible node. A good
introduction to the graph-theoretical foundations of this
formalism can be found in Brualdi’s book [33], and a
detailed explanation of its adaptation to the analysis of
reaction-diffusion systems was given in Ref. [59].
Similarly, a reaction graph denoted as G½JR� can be
associated to the Jacobian of the reaction term. Here, we
provide a summary of the essential results and examples to
illustrate the definitions. Figure 7(a) depicts the reaction-
diffusion graph of a minimal four-species Turing system.
All species are assumed to diffuse. It has four cycles that are

FIG. 7. (a) Jacobian of the reaction term and corresponding
reaction-diffusion graph of a four-species Turing system. (b1)–
(b4) Four reaction cycles contained in the graph: ,

, , and ▵
uwv

¼ fwu · fvw · fuv. (c1),

(c2) Subgraphs induced by γ0 ¼ ðu; wÞ and by γ ¼ ðu; v; wÞ, with
the corresponding principal submatrices of JR shown above.
(d1)–(d3) lR-subgraphs contained in Iγ¼ðu;wÞ. (e1)–(e4) lR-sub-
graphs contained in Iγ¼ðu;v;wÞ. Graph components that do not form
part of a subgraph are dimmed.
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shown in Fig. 7(b). Using the graph notation introduced in
the main text, it is possible to use a single symbol to denote
the product of Jacobian entries that form their weight.
Intuitively, the subgraph induced by a subset of nodes is

the subgraph formed by these nodes and the edges between
them. According to this definition, the subgraph Iγk induced
by the nodes γk ¼ ði1; i2;…; ikÞ corresponds to the Coates
graph G½FRDγk �, where FRDγk is the submatrix formed by row
and column indexes in γk. In this way, we can establish a
one-to-one correspondence between each principal subma-
trix FRDγk and an induced subgraph Iγk . Examples of this
correspondence for two induced subgraphs of the example
network are shown in Fig. 7(c). There are ðNkÞ different k-
by-k principal submatrices in an N-by-N matrix. The
coefficient akðqÞ of the characteristic polynomial PqðλÞ
is given by the sum of the signed determinants of all the
k-by-k principal submatrices [34]:

akðqÞ ¼
X

γk

ð−1Þk det½FRDγk ðqÞ�: ðA1Þ

The Coates-Harary formula provides a graphical inter-
pretation of the determinant of a matrix. Precisely,

the signed determinant of a k-by-k matrix FRDγk is given
by the sum of the weights of all l-subgraphs contained in
the induced subgraph Iγk ,

ð−1Þk det½FRDγk ðqÞ� ¼
X

l⊆Iγk

wðlÞ; ðA2Þ

where an l-subgraph contained in Iγk is a set of non-
overlapping cycles (including the diffusive loops) that span
all the nodes in γk, and its weight is given by the product of
the weights of its cycles and a factor −1 for each of them:

wðlÞ ¼
Y

c⊆l
½−wðcÞ�: ðA3Þ

Examples of induced subgraphs of size 2 and 3 in the
example network are shown in Fig. 7(c), and the l-
subgraphs contained in them are shown in Figs. 7(d)
and 7(e).
Introducing Eqs. (A2) and (A3) in Eq. (A1), and splitting

the contribution of each induced subgraph in purely reac-
tionlike graphs, mixed and purely diffusive, we can express
akðqÞ as

akðqÞ ¼
X

Iγk

� X

lR⊆Iγk

wðlRÞ þ
Xm<k

γm⊂γk

q2m
�Y

j∈γm

dj

�

·

� X

lR⊆Iγk−γm

wðlRÞ
�
þ q2k

Y

j∈γk

dj

�
: ðA4Þ

Hence, the coefficients akðqÞ of PqðλÞ, which determine
the stability of the systemwithout diffusion and the existence
of diffusion-driven instabilities, can be easily calculated as a
sum of all the l-subgraphs of size k. Figure 8 shows the l-
subgraphs of size 4 in the example network.

APPENDIX B: GRAPH NOTATION,
CALCULATION OF COEFFICIENTS, AND
RELAXATION OF CONSTRAINTS IN A 4N

TOPOLOGY

This section demonstrates how to calculate the coeffi-
cients of PqðλÞ in terms of subgraphs for a four-node
topology. The example topology, shown in Fig. 9(a), is
particularly interesting because it can be transformed into a
type III network by assuming that just one node is
immobile. It has four different cycles, listed in Fig. 9(b):
a cycle of length 1 (or loop) in node 1; a cycle of length 2
between nodes 1 and 2 and another between 2 and 4; and a
cycle of length 3 that joins 2,4, and 3.
A simple recipe to calculate akðqÞ is to go through the

subgraphs induced by all possible combinations of k
different nodes and sum the l-subgraphs contained in each
of them. Thus, trivially, the coefficient a1ðqÞ is the sum of
all cycles of length 1 (including the diffusive loops):

FIG. 8. l-subgraphs of size 4 contained in the network shown
in Fig. 7, ordered in rows according to the number of diffusive
loops contained.
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Similarly,a2ðqÞ is the sumof thel-subgraphs contained in all subgraphs induced by twonodes: by nodes 1–2 (the reaction cycle
, the product of with the diffusive loop of node 2, and the product of their diffusive loops); by nodes 2–4 (the reaction cycle

and theproduct of their diffusion loops);bynodes1–3and1–4 (theproductof with thediffusive loopsof theothersand thepairs
of diffusive loops); and by nodes 2–3 and 3–4 (which only contribute with the products of their diffusive loops). These are

Following the same recipe, the rest of the coefficients can be readily obtained:

Examination of the reaction terms in these coefficients (thosewithoutq2 factors) is informative: It shows the combinationof edge
signs that are allowable to build a Turing network with the topology of Fig. 9(a). Stability without diffusion requires
akðq ¼ 0Þ > 0, and this imposes strict limitations onwhich cycle can act as the destabilizingmodule. Froma1ð0Þ > 0, we infer

; the loopmust be a decay term. Likewise,a4ð0Þ > 0 imposes ▵
243

< 0. The conditiona2ð0Þ > 0 seems to indicate that any

of thecyclesof length2couldbe thedestabilizingmodule.This is showntobe falsebyexamining the secondHurwitzdeterminant

, whichmust also be positive for stability (see Sec. I of theSupplementalMaterial [37] for

details).Hence,we infer that must be negative and that theonly possible destabilizingmodule is then .With these limitations,
we can choose the signs of the edges in the example topology to build a Turing network. A possible choice is shown in Fig. 9(c).
Introducing the cycle signs explicitly in a4ðqÞ is also informative, since it reveals how to weaken the diffusion constraints:

Indeed, imposing that node 4 is immobile transforms the network into a type III because it removes the stabilizing effect
of all subgraphs of the same and smaller size than the destabilizing module. Hence, the destabilizing module becomes the only
contributor to the leading term in a4ðqÞ:

Examination of the topology also allows us to infer the phase occupied by each species without the need to make additional
calculations. Following the rule of thumb detailed in Appendix F, we can determine that species 2,4, and 1 are in phase, while

FIG. 9. (a) A minimal four-node topology. (b) Cycles contained in the topology and their weight in terms of the kinetic terms.
(c) Turing network based on the example topology. It becomes a type III network just by assuming that node 4 is immobile.
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species 3 is out of phase with them. The reason why this
topologycouldbean ideal design to engineer a systemthat can
generate Turing patterns is discussed in Sec. III C of the
Supplemental Material [37].

APPENDIX C: DESIGN OF A LARGE
TURING NETWORK

The study of Turing systems is generally limited to
networks of small size, typically N ¼ 2 or N ¼ 3 nodes.
Here, we show how the present framework facilitates the
design of a large network of N ¼ 10 nodes. This exercise
showcases how the present theory enables finding solutions
to a technical challenge and, more importantly, it reveals
the existence of unexpected phenomena that may be
specific to large Turing systems. There are two main
difficulties to overcome in order to design a large Turing
network: First, finding a topology that can potentially form
a stable reaction network and undergo diffusion-driven
instabilities. Second, finding a set of numerical values for
the parameters so that the stability and instability con-
ditions are fulfilled. A solution to the first point is guided by
the fact that stability requires the coefficients aið0Þ>0 for
i ≤ N, while stationary diffusion-driven instabilities require
a destabilizing module of length smaller than N.
Topologically, this means that there must be a negative
cycle (or stabilizing l-subgraph) of every length up to 10
and a positive cycle of length smaller than 10.
The topology shown in Fig. 10(a) fulfills this criterion.

The following strategy was adopted to build it: We draw ten
nodes and add a negative loop to n1 (i.e., node 1); then, we
add a cycle of length 2 that connects n2 to n1, then a cycle
of length 3 that connects n3 with the previous two, and so
on, up to N − 2 ¼ 8. The cycle of length N − 1 ¼ 9
connecting n1 to n9 is set to be the destabilizing cycle
and, therefore, positive. The reason to choose a cycle of
length N − 1 as the destabilizing cycle is to enforce that
instabilities associated to ai<N < 0 do not occur, because
they would result in oscillations and not stationary patterns.
Since there must be a stabilizing l-subgraph of the same
length as the destabilizing module, we must add an addi-
tional negative cycle. In this case, we add an edge that joins
n10 to n7 to create an additional cycle of length 4, which,
together with the negative cycle of length 5 that joins n1 to
n5, forms a stabilizing l-subgraph of length 9. Note that
there are many other possibilities to achieve the same result
(e.g., adding a cycle of length 5 that does not overlap with
the existing one of length 4).
Next, we tackle the problem of finding a set of parameter

values that fulfill the Turing conditions and resolving the
sign of the cycles for which there may be an ambiguity.
First, we need to calculate the coefficients aið0Þ and
confirm that the network can be stable without diffusion.
To ease the notation, we denote the loop at node 1 as c1; the
cycle joining n1 to n2 as c2; the cycle joining n1, n2, and n3
as c3; and, in this way, up to c10 that joins n1 to n10. The

additional cycle of length 4 between n7;…; n10 is denoted
by c̄4. With this notation, the coefficients ai can be
expressed compactly as

a1ð0Þ ¼ −c1; a2ð0Þ ¼ −c2;

a3ð0Þ ¼ −c3; a4ð0Þ ¼ −c4 − c̄4;

a5ð0Þ ¼ −c5 þ c1 · c̄4; a6ð0Þ ¼ −c6 þ c2 · c̄4;

a7ð0Þ ¼ −c7 þ c3 · c̄4; a8ð0Þ ¼ −c8 þ c4 · c̄4;

a9ð0Þ ¼ −c9 þ c5 · c̄4; a10ð0Þ ¼ −c10 þ c6 · c̄4:

Note that, for i ≥ 4, there is more than one l-subgraph at
each order, which may allow different choices of signs for
the cycles of the corresponding lengths. Stability conditions
are guaranteed if all the Hurwitz determinants are positive
(see Sec. I of the Supplemental Material [37] for details). In
this example, this involves ten nonlinear algebraic inequal-
ities with up to 10! terms formed by products of ten
coefficients akð0Þ. Thus, finding a set of parameter values
that fulfills these inequalities in the eleven-dimensional
space of the cycles is a formidable task. A blind numerical
exploration is extremely inefficient, because of the sheer
size of the parameter space. In fact, all attempts to find
solutions by brute force fail after reasonable computational
time, at least if not all the signs of the edges are known.
Thus, we propose an efficient method to work around this
problem, which is a useful aid to design large Turing
networks and also poses the question of robustness in an
interesting perspective. The key to the method is simple:
From the identity Pq¼0ðλÞ ¼ ðλ − λ1Þ ·… · ðλ − λNÞ, it
follows that aið0Þ ¼ ð−1ÞiPj1<…<jiðλj1 ·… · λjiÞ. Hence,
instead of searching for values of ci that result in coef-
ficients aið0Þ that fulfill the Hurwitz conditions, we fix the
eigenvalues to arbitrary negative values λ1 < 0; λ2 <
0;…; λN < 0; derive the numerical values of the coeffi-
cients aið0Þ; and, from them, derive the cycle’s weights.
Thus, introducing the numerical values of aiðλ1;…; λNÞ in
their expressions in terms of cycles, we obtain a much
simpler nonlinear system of algebraic equations with ci as
unknowns. For the topology of Fig. 10(a), the system is
easily solvable and it has two solutions. In general, the
manifold formed by the solutions of this system of
equations determines the robustness of the associated
Turing network. Hence, it would be interesting to study
the relationship between topological properties (such as the
number of cycles versus nodes) and the structure of the
associated system of algebraic equations obtained in
this way. A set of kinetic parameters obtained with this
method setting λ1 ¼ −0.1, λ2 ¼ −0.5, and λi ¼ −1, for
i ¼ 3;…; 10, is shown in Fig. 10(b). Finally, we need
to confirm that the network is capable of undergoing
diffusion-driven instability. Again we take advantage of
the intuition given by the topological framework and set as
diffusible the nodes that are complementary to the
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destabilizing module, in this case just n10. At least one node
inside the destabilizing node must be diffusible to avoid a
Turing filter. We also impose that n6 is nondiffusible
because it is complementary to c̄4 · c5. In this way, we
avoid its stabilizing effect to compete with the destabilizing
module. Indeed, with the choice of diffusible nodes in
Fig. 10(b), a10ðqÞ is

Since the destabilizing module is the only contributor of its
size to a10, the network is of type II. Indeed, assigning the
same value to all the diffusion rates for i ¼ 7;…; 10,
the network undergoes diffusion-driven instabilities. The
dispersion relationship and the pattern generated are shown
in Figs. 10(c) and 10(d). We have also confirmed that the
pattern phases can be easily deduced using the rule of
thumb: With the choice of signs of Fig. 9(b), it predicts a
phase formed by species 1,9,10 and another with species 2
to 8, which we have confirmed numerically. Our explora-
tion of the parameter space of this ten-node network
revealed unexpected phenomena, such as stationary pat-
terns with peak doubling, spiral waves, and pulses within
stationary patterns. These phenomena occur in specific
regions of the Turing space and depend on the saturation
terms, so they may occur in regions in which the analysis
by linear approximation breaks down. In addition, for the
numerical values explored, there are large differences in the
amplitudes (the height of the peaks, not the wavelengths) of
the patterns made by the different species, caused by the
difference in the magnitude of the eigenvectors’ compo-
nents. In conclusion, this suggests that the study of large
Turing systems may lead to the discovery of new dynamical
behaviors that are intrinsic to systems of their size.

APPENDIX D: ANALYSIS OF TURING MODELS
FROM THE LITERATURE

1. The CIMA reaction

The chlorite–iodide–malonic acid (CIMA) reaction was
the system in which stationary Turing patterns were first
observed [12]. Lengyel and Epstein analyzed a model that
correctly describes the temporal behavior of the reaction to
investigate the patterning mechanism underlying the reaction
[2]. This analysis suggested that starch, introduced as an
indicator tovisualize the formation of spatial structures, forms
a complex with iodine that cannot diffuse in the gel where the
reaction occurred. In this way, the effective diffusion of the
activator (iodine, I−) is reduced, producing the difference in
diffusion with the inhibitor (chlorite, ClO−

2 ) that is required
for Turing instabilities. By making a series of reasonable
approximations about the underlying chemical processes, the
description of the CIMA reaction can be reduced to a three-
species reaction-diffusion model [15]. Denoting the concen-
tration of the activator as ½I−� ¼ u, the inhibitor ½ClO−

2 � ¼ v,
starch as s0, and the starch-iodine complex ½SI−3 � ¼ su, the
Lengyel-Epstein model can be written as

∂u
∂t ¼ fðu; vÞ − kþso · uþ k− · suþDu

∂2u
∂x2 ;

∂v
∂t ¼ gðu; vÞ þDv

∂2v
∂x2 ;

∂su
∂t ¼ kþso · u − k− · su: ðD1Þ

The kinetic constants kþ and k− give the rates of formation
and dissociation of the starch-iodine complex. Lengyel and
Epstein further simplified the analysis by assuming that the
formation and dissociation of the complex is very fast.

FIG. 10. (a) A ten-node Turing topology. The last edge of the destabilizing cycle is highlighted in red. (b) Distribution of edge signs
that make a ten-node Turing network based on the topology in (a). Parameter values are found with a search method tailored for very
large systems. (c) Dispersion relationship and (d) numerical simulation of the stationary pattern generated with the parameter values
shown in (b).
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With this approximation, the concentration of the com-
plex is given by su ¼ ðkþ · s0=k−Þu because it is in
instantaneous equilibrium with the activator u. The
CIMA model is then simplified to a set of two reaction-
diffusion equations for u and v and, importantly, this
transformation introduces a timescale separation between
the two species that reflects that the activator is being
trapped and released by the starch in the medium. Using
realistic values for the parameters in the model, Lengyel
and Epstein estimated that, without starch, the diffusion
rate of v ought to be ten times faster than that of u to
generate Turing instabilities. According to the Stokes-
Einstein law, the diffusion of two ions of similar sizes in
aqueous solution cannot possibly be that different.
However, the introduction of starch reduces the necessary
ratio of diffusion rates to a more plausible value of 1.5.
Next, we use our graph-based formalism to analyze the

mechanism of relation of diffusion constraints in the CIMA
reaction. The analysis does not require the assumption of
fast complex formation and, in this respect, is more general.
The reaction-diffusion graph associated to the Lengyel-
Epstein model of the CIMA reaction given by Eq. (D1) is
obtained following the procedure detailed in the main text
and shown in Fig. 11.
The activator has two loops that correspond to the self-

activation term ∂f=∂u and the term kþ · s0 that gives
the rate of decrease in the concentration of u through
complex formation. In graph notation, this is represented
by , with the first loop accounting for self-
activation and the second for complex formation. In
addition, the edges that form the cycle between u and
su and their loops are not independent, because the
number of iodide molecules is conserved and, therefore,

. These identities lead to the following

simplification of the subgraph induced by u and su:

In turn, this simplifies the coefficient a3 of the characteristic
polynomial to

Hence, the only term in a3ðqÞ that can be negative in order
to fulfill the necessary condition for stationary Turing
patterns is the coefficient of q2. The form of a3ðqÞ is
characteristic of a type II Turing system according to the
diffusion constraints. Indeed, defining , this
condition can be expressed as

Importantly, stability requirements do not force that is
smaller than , because the network contains other
stabilizing loops:

Hence, the diffusion ratio can be equal to 1 and even
smaller, depending on the parameter values of and .
The explicit form of the constraints for the kinetic param-
eters can be obtained by examining the rest of the stability
conditions aið0Þ > 0, but they do not further limit the
diffusion ratio of the activator and the inhibitor. Thus, this
analysis allows us to easily derive the diffusion constraints
of the CIMA reaction and does not require the approxi-
mation that complex formation is very fast. Importantly, all
network designs based on the CIMA architecture result in a
type II Turing system, because of the existence of stabiliz-
ing terms involving more diffusion loops. Examples of such
networks can be found in Refs. [19–21].

2. Biological models based on the
CIMA architecture

In this section, we analyze two Turing models inspired
by the CIMA reaction. The first is a recent investigation of
the conditions for diffusion-driven instability in the pres-
ence of binding immobile substrates by Korvasova
et al. [19]. This is a purely theoretical study that aimed
to weaken the restrictive conditions that apply to diffusion
rates and kinetic parameters of two-node Turing networks.
To that end, they analyzed the Lengyel-Epstein model

[15] of the CIMA reaction using standard linear stability
analysis and algebraic manipulations. They also proposed a
four-node generalization of the CIMA model in which two
self-activators bind two immobile substrates. The corre-
sponding reaction-diffusion graph is shown in Fig. 12(a).
The principle behind the relaxation of diffusion con-

straints is the same as in the CIMA reaction. The transient
bonds between the activator and substrates do not change the

FIG. 11. (a) The CIMA reaction modeled by Lengyel and
Epstein [15]. Iodine I− acts as the activator, chlorite ClO−

2 as the
inhibitor, and the starch-iodine complex SI−3 cannot diffuse because
it is trapped by the medium. (b) The reaction-diffusion graph
associated to the Lengyel-Epstein model of the CIMA reaction.
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number of molecules. As in the CIMAmodel, the subgraphs

induced by these pairs simplify to and

, where the loop notation makes explicit the

contribution from self-activation and complex formation as
in the CIMA reaction. The Turing condition a4ðqÞ < 0 can
then be expressed as

The existence of two activators introduces an additional
relaxation of constraints compared to the original CIMA
model: the necessary condition stemming from Decartes’s
rule of signs is guaranteed because there is a term in a4ðqÞ

formed only by destabilizing terms. However, there is a
stabilizing subgraph that contains more diffusive loops and,
because of this, the conditions for diffusion-driven insta-
bilities are not independent of the diffusion rates. Still, as in
the CIMA reaction, the diffusion rates can be equal, and the
network is of type II. The second model to be analyzed was
proposed by Rauch and Millonas [20] as a plausible
mechanism of biological pattern formation. The model
consists of biochemical reactions between gene products
that are confined inside cells and, therefore, can be consid-
ered nondiffusible and messenger molecules that are
secreted by cells and can diffuse between them. The
associated reaction graph is shown in Fig. 12(b). Taking
advantage of the simplifications that follow from mass
conservation as in the previous model, the a4ðqÞ coefficient
can be expressed as

Again, because the nodes A and I are not diffusible, there are
stabilizingsubgraphsthatvanish fromthecoefficientofdegree
q2 in a4ðqÞ. The structure of a4ðqÞ shows that this network,
likeCIMA, is alsoa type II. In thisway, themodel showshowa
realistic physiologicalmodel can result in aTuring system that
does not require differential diffusivity.

3. Hair follicle formation

A recent work by Klika et al. [23] investigated the
influence of interactions mediated by immobile receptors in
a model of hair-follicle patterning in vertebrate skin. The
model was originally proposed by Mou et al. [60] and is
based in their experimental analysis of the interactions
between three key players in hair follicle patterning: a

nondiffusing receptor (Edar), a connective tissue growth

factor (CTGF), and a bone morphogenetic factor (BMP).
The experimental observations of Mou et al. [60] led

them to propose the network shown in Fig. 13(a). This
network is a Turing filter. We can reach this conclusion
without further analysis because the destabilizing module

is nondiffusible. The proof of the generality of

this result is given in Sec. IV of the Supplemental
Material [37]. Indeed, this can be confirmed by examining
the form a3ðqÞ:

FIG. 12. (a) Network composed of two diffusible self-activators that bind to two immobile substrates [19]. (b) A model of biological
patterning based on two morphogens that diffuse in the extracellular space and activate the production of gene products A and I that are
confined inside cells [20].
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With the assumed distribution of cycle signs, the condition
a3ðqÞ < 0 for Turing instability is fulfilled independently
of parameter values for q above a critical value.
Klika et al. [23] introduced a series of changes to the

model shown in Fig. 13(b) because of theoretical objec-
tions. They postulated that Turing systems must be stable
for very large wave numbers. If this is not the case, they
observed that infinitely small wavelengths would be
amplified, in which case the continuum approximation
breaks down. Hence, the signs of the loops of Edar
and CGTF are inverted, so that the network does not have
a nondiffusible self-activator. Laborious algebraic

transformations allowed them to prove that the system
cannot generate stationary patterns but that it can undergo
oscillatory Turing instabilities.
This result is readily recovered using the graph formal-

ism. Stability imposes that . This means that

a3ðqÞ is formed only by positive terms and, therefore,
cannot fulfill the condition a3ðqÞ < 0. However, the
coefficient a2ðqÞ can fulfill a2ðqÞ < 0, the condition for
oscillations. This requires and the following
constraint on the diffusion ratio:

This shows that this network is an oscillatory Turing system of type II according to the diffusion constraints. Finally,
Klika et al. proposed an alternative network for hair-follicle patterning that is shown in Fig. 13(c). The assumption
behind this modification is that CTGF does not inhibit the production of BMP directly, but instead inhibits the effects of
BMP on Edar. Then, they showed that this network can generate stationary patterns. This result is recovered by
examining a3ðqÞ:

where the second inequality characteristic of type I
networks stems from the stability condition

.

4. A Turing oscillator with a single
diffusible molecule

Next, we analyze a design proposed recently as a
candidate to engineer a synthetic gene network capable
of producing spontaneous diffusion-driven pattern

formation in a field of biological cells [40]. The design,
shown in Fig. 14(a), is an alternative topology to the classic
Turing network: It is based on a three-node unstable
oscillatory network quenched by an additional diffusible
molecule. Based on the results derived from our theory, it is
possible to conclude, without the need to introduce
numerical values, that (1) the network can only produce
oscillatory patterns and (2) it is a oscillatory Turing filter.
The coefficients akðqÞ of the quenched oscillator in terms
of subgraphs are

FIG. 13. Three alternative models of hair follicle patterning proposed by (a) Mou el al. [60] and (b),(c) Klika et al. [23]. They form a
Turing filter, an oscillatory Turing network of type I, and a stationary Turing network of type I, respectively.
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where the expressions after the second equality result from setting the decay rates of all species at −1 (i.e., , ∀i).
Indeed, because of the lack of a positive cycle, all the coefficients are increasing polynomials in q and the conditions of
stationary Turing patterns cannot be met. Therefore, the network can only produce oscillatory patterns. The conditions for
oscillatory instabilities found in Ref. [40] can be readily derived in terms of the cycles. The first condition imposes that the
motive formed by species 1,2, and 3 is unstable: The coefficients of the characteristic polynomial associated to this

subnetwork are , , and . If this subnetwork has

to be unstable, the only possibility is that the second Hurwitz determinant is negative: ā1ð0Þ · ā2ð0Þ − ā3ð0Þ ¼ 8þ ▵
123

< 0,

which leads to −▵
123

¼ b1 · b2 · b3 > 8. Conversely, the stability of the full network requires the third Hurwitz to be positive:

, which recovers the second condition

. Regarding the point that the network is, in fact, an oscillatory Turing filter, it suffices to observe that

the subgraph that causes the instability is induced by nondiffusible species. It then follows that, for large wave numbers, the
eigenvalues of the full network converge to the (complex) eigenvalues of this subgraph. This can be shown following the
proof that characterizes Turing filters (see Sec. IV of the Supplemental Material [37]). The shape of the dispersion
relationship shown in Fig. 14(b) and numerical simulations [examples shown in Fig. 14(c)] confirms that this network
conforms to the behavior expected from an oscillatory Turing filter.

FIG. 14. (a) Design for synthetic genetic Turing network proposed by Hsia et al. in Ref. [40]. The system is formed by an unstable
oscillatory subnetwork (species 1, 2, and 3) quenched by a single diffusible molecule (species 4). (b) Dispersion relationship
characteristic of an oscillatory Turing filter. (c) Oscillatory amplification of a prepattern persists over time under deterministic dynamics
(top), but it is degraded and lost after a few periods under stochastic dynamics (bottom).
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APPENDIX E: CALCULATION OF THE
TURING SPACE

The Turing space of a reaction-diffusion network is
formed by the parameter combinations that fulfill the
conditions for Turing instability. To assess the robustness
of a network, we calculate the volume of the Turing space
with fixed values of diffusion rates. Precisely, we set a
constant ratio of the diffusion rates of the species in the
destabilizing module to the species outside and vary the
values of the kinetic parameters. In this way, we can obtain
a meaningful comparison of the robustness of two different
networks for realistic values of the diffusion rates. Taking
advantage of the fact that cycles are the true variables
determining the dynamics of a reaction-diffusion system,
the volume of the Turing space is calculated in the space
formed by the weight of the cycles, rather than the space of
individual kinetic parameters. The volume of the Turing
space cannot be integrated analytically, because of the
complexity of the Turing conditions. Hence, we use
Monte Carlo integration to evaluate it numerically.
Assuming that kinetic parameters have uniformly distrib-
uted random values in [0, 1], the distribution of values of
the weight of a cycle formed by k edges is given by the
probability density pðwÞ ¼ ð−1Þk−1logk−1ðwÞ=ðk − 1Þ!,
where w is the weight value [61]. If c is the number of
cycles in a network, we draw m random values for each
cycle from pðwÞ, thus obtaining a grid of mc points in the
space of cycle weights. Let ns and nt be the number of
points that fulfill the stability and the Turing conditions,
respectively. The normalized volumes of the stability space
Vs and of the Turing space Vt are then calculated as

Vi ≈
ni
mc ; i ¼ s; t: ðE1Þ

For the purpose of visually representing the Turing spaces
of the networks, in the main text, we plotted a three-
dimensional cross section of them by setting the value of
the stabilizing loop to −1=2. An interesting feature of this
measure is that it permits us to compare the robustness of
networks of different sizes, provided that they have the
same number of cycles (as is the case for minimal networks
of three to five nodes). In addition, this measure of
robustness is biologically more meaningful than varying
the full set of parameters, since mutations can plausibly
produce large changes in the reaction rates between
molecules, whereas mutations can hardly produce large
changes in the diffusion rates. Alternatively, this measure
can be interpreted as the likelihood that a network evolves
patterning power through random mutations.

APPENDIX F: RULE OF THUMB TO PREDICT
PATTERN PHASES

The topology of a minimal Turing network allows us to
predict the phases of the pattern produced. The simple

method that we have found is based on examining the
cycles of the network. Hence, it does not require us to
calculate the eigenvectors of the associated eigenvalue
problem. This is particularly advantageous in networks
with more than two species, where the analytical solution of
the eigenvalue problem is either very cumbersome or, for
N ≥ 5, cannot be found in terms of radicals. Numerical
solutions can of course always be found, but they do not
provide an intuitive understanding. In addition, in many
real systems, the values of the parameters are not known.
The phase of the species in the positive cycle of the

destabilizing factor is established first. For any two nodes a
and b, the positive cycle connecting them can be divided
into two directed paths, one from a to b and another from b
to a. Also necessarily, since the cycle is positive, these
paths must either be both positive or both negative. In the
former case, a and b will be in phase, and in the latter, out
of phase. By this simple procedure, the relative phase of
every pair of species in the destabilizing module is
established.
Next, the phases of the species outside the destabilizing

module relative to those inside will be established. Select a
node outside the destabilizing module and find a cycle that
connects it with a node inside. If the cycle is positive, the
phase can be established as before. If the cycle is negative,
again, there are just two possibilities for any two nodes a
and b in it: either the path from a to b is negative and the
path from b to a is positive or the other way around. Let a
be the species in the destabilizing module and b the species
outside. If the path from a to b is positive, then b is in phase
with a. If the path from a to b is negative, then b is out of
phase with a. By iteration of this procedure, it is then
possible to establish the phase of all the remaining nodes in
the network. We have verified that the method allows us to
predict correctly the phases of all minimal networks up to
five nodes. A few examples are shown in Fig. 15. In
nonminimal networks, there may be more than one cycle of
the same order connecting the nodes outside the destabi-
lizing module with the nodes that induce it. In this case,
there may be an ambiguity if the different connecting cycles
have different signs. Then, the cycle chosen to establish the
phase of nodes outside the destabilizing module should
have the largest weight amongst them. We have tested this
method with a few examples of nonminimal networks
(including the ten-node network of Appendix C). If the
stability conditions impose an invariant hierarchy in the
weights of the cycles, then the ambiguity is resolved, and
the phases can be inferred just from the topology. However,
there may be more complex nonminimal topologies, in
which more than one distribution of cycles’ signs and
relative weights can form a Turing network. In this case,
topology is not enough to determine the phases, and the
numerical values of the cycles’ weight may need to be
considered to obtain them. Thus, the general topological
rule to determine the phases remains to be found and
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proved rigorously in the general case of nonminimal
networks. In addition, it must be emphasized that the
topology of the reaction-diffusion graph reflects the linear
approximation of the system, and, therefore, the predictions
based on the topology hold as long as predictions based on
the linear stability analysis hold.
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