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The Clock and Wavefront Self-Organizing model recreates the
dynamics of mouse somitogenesis in vivo and in vitro
Julie Klepstad and Luciano Marcon*

ABSTRACT

During mouse development, presomitic mesoderm cells synchronize
Wnt and Notch oscillations, creating sequential phase waves that
pattern somites. Traditional somitogenesis models attribute phase
waves to a global modulation of the oscillation frequency. However,
increasing evidence suggests that they could arise in a self-organizing
manner. Here, we introduce the Sevilletor, a novel reaction-diffusion
system that serves as a framework to compare different somitogenesis
patterning hypotheses. Using this framework, we propose the Clock
and Wavefront Self-Organizing model that considers an excitable self-
organizing region where phase waves form independent of global
frequency gradients. The model recapitulates the change in relative
phase of Wnt and Notch observed during mouse somitogenesis and
provides a theoretical basis for understanding the excitability of mouse
presomitic mesoderm cells in vitro.

KEY WORDS: Mathematical model, Self-organization,
Reaction-diffusion, Explants, Phase waves, Excitability

INTRODUCTION
During embryonic development, precise coordination of cell
behaviors in both time and space is essential to generate robust
gene expression patterns at the tissue level. A remarkable example of
this coordination can be observed during somitogenesis (Miao and
Pourquié, 2024), the formation of body segment precursors. In
vertebrates, this process is characterized by waves of gene expression
that propagate from the posterior tip of the tail to the anterior side,
resulting in the sequential formation of somites (Fig. 1A). These
waves are generated by synchronizing oscillations driven by the
segmentation clock, a genetic network of presomitic mesoderm
(PSM) cells that pattern somites in a rhythmic manner. Previous
studies have demonstrated that the core of the segmentation clock
is implemented by delayed negative feedbacks (Lewis, 2003;
Takashima et al., 2011) and that the waves arise from a phase shift
of the clock along the anterior-posterior axis (Masamizu et al., 2006;
Aulehla et al., 2008). The specific mechanism responsible for the
spatial synchronization of oscillations at the tissue level, however,
remains a subject of debate.
The Clock and Wavefront (CW) model (Cooke and Zeeman,

1976) was the first theoretical study to suggest that oscillation in the

posterior part of the PSM (clock) controls somitogenesis.
According to this model, when cells exit this posterior region they
enter a determination front (wavefront) that could be defined by
global positional information signals (Wolpert, 1969) undergoing
rapid changes governed by the phase of the clock to form periodic
somite patterns (Fig. 1B). The main ideas of the CW model have
received strong experimental support in chick, zebrafish and mouse,
where it has been shown that the posterior PSM exhibits
homogeneous oscillations of Notch, Wnt and Fgf signaling
(Aulehla and Pourquié, 2010; Oates, 2020; Palmeirim et al.,
1997). Moreover, experimental evidence shows that posterior
signaling gradients of Wnt and Fgf can modulate the oscillations
at the posterior tip of the tail (Dubrulle et al., 2001; Naiche et al.,
2011; Aulehla and Pourquié, 2010), while retinoic acid (RA) forms
an anterior gradient that localizes within newly formed somites and
promotes differentiation (Duester, 2007; Aulehla and Pourquié,
2010; Oates, 2020) (Fig. 1A).

In its original formulation, however, the CWmodel fails to account
for the formation of phase waves observed during vertebrate
somitogenesis. A popular reincarnation of the CW model that
addresses this issue is the Clock and Gradient model (CG), which
assumes that the frequency of the clock slows down gradually
from posterior to anterior (Morelli et al., 2009; Herrgen et al.,
2010) promoting a spatial alternation of phases (Fig. 1C). Adding
local coupling to the CG model enhances robustness and scales the
overall frequency (Morelli et al., 2009; Herrgen et al., 2010)
but the formation of wave patterns in these models is promoted by
the frequency profile (Oates et al., 2012). One possibility is that the
tissue-wide frequency profile is regulated by posterior signals, for
example by modulating the local coupling-strength of Delta-Notch
(Kuyyamudi et al., 2022). Genetic manipulations in mice, however,
have shown that multiple phasewaves can form even with the ectopic
activation of posterior signals throughout the entire PSM (Aulehla
et al., 2008), suggesting that the formation of phase waves may
exhibit a degree of self-organization.

On one hand, this spatial self-organization could occur in a cell-
autonomous manner, as recent experiments indicate that isolated
cells of the zebrafish PSM in vitro slow down and stop oscillations
depending on their anterior-posterior position (Rohde et al., 2021
preprint). On the other hand, the synchronization of oscillation
underlying phase waves may involve local cell communication
(Maroto et al., 2005; Masamizu et al., 2006; Webb et al., 2016;
Oates, 2020). This is especially relevant in mouse, where it has been
shown that isolated PSM cells stop oscillating in vitro and can be
excited to oscillate by increasing cell density (Hubaud et al., 2017),
showing that, in mouse, cell communication plays a central role in
both initiating and synchronizing oscillations at the tissue level
(Newman, 2022).

The capacity of the mouse PSM to spontaneously synchronize
oscillations and generate phase waves has also been highlighted with
tail explants in vitro (Lauschke et al., 2013; Hubaud et al., 2017;
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Tsiairis and Aulehla, 2016). These explants can generate circular
phase waves that resemble somitogenesis upon significant cellular
re-arrangement and perturbation of embryonic signals. Wave
formation has also been observed in more heterogeneous cultures
obtained by mixing cells from different tailbud explants (Hubaud
et al., 2017; Tsiairis andAulehla, 2016), highlighting the ability of the
PSM to self-organize. The idea that PSM can self-organize has also
been explored in the Progressive Oscillatory Reaction-Diffusion
(PORD) model (Cotterell et al., 2015), in which new somites form
through a relay mechanism triggered by the last formed somite via
local cell communication (Fig. 1D). In this model, however, phase
waves are still formed by a global frequency profile gradient similar to
the CG model. Therefore, the role that self-organization plays in
phase wave formation remains unclear.
Here, we present a novel theoretical framework for studying

spatial synchronization of oscillations via self-organization or
graded frequency profiles. Our framework includes a core reaction-
diffusion system driven by delayed negative feedback between
two self-enhancing genes, a regionalizing function and a graded
frequency function. This model can generate diverse self-organizing
behaviors at the tissue level including lateral inhibition, rotating
waves and periodic wave patterns. These are common behaviors of
systems far from equilibrium (Cross and Hohenberg, 1993; Tyson
and Keener, 1988) and have been observed in previous reaction-
diffusion models (Shepelev and Vadivasova, 2019; Singh and
Sinha, 2013). One of the strengths of our framework lies in its
capacity to generate this range of self-organizing behaviors by
adjusting a single reaction parameter that promotes a bifurcation.
Additionally, near this bifurcation, our system exhibits a previously
undescribed dynamic behavior: the formation of periodic phase
waves via diffusion-driven excitation of a bistable state. These phase
waves resemble patterns observed in models of the Belousov–
Zhabotinsky chemical reaction (Zhabotinsky and Zaikin, 1973;
Prigogine and Lefever, 1968; Nicolis and Prigogine, 1977; Field
and Noyes, 1974), such as the Brusselator and the Oregonator, from

Brussels (Belgium) and Oregon (USA), respectively. Continuing
the tradition, we named our theoretical framework the Sevilletor, as
it was developed in Seville (Spain).

We demonstrate that the Sevilletor framework can recapitulate the
main qualitative patterning behaviors of the principal theoretical
models proposed to explain somitogenesis with minimal parameter
changes. This allows us to directly compare the qualitative behavior of
different models. Moreover, it leads us to devise a new somitogenesis
model that extends the CW model with an excitable self-organizing
region where phase waves form independent of global frequency
gradients. We name this model the Clock and Wavefront Self-
Organizingmodel (CWS), and show that it provides a theoretical basis
for understanding the excitability of mouse PSM cells observed
in vitro (Hubaud et al., 2017). Notably, the addition of this excitable
region can also explain the change in the relative phase betweenNotch
andWnt observed in the middle part of the mouse tail (Aulehla et al.,
2003; Sonnen et al., 2018). Overall, we show that the CWSmodel can
recapitulate the self-organizing potential of the PSM both in vivo and
in vitro.

RESULTS
We begin the results section by providing a summary of a detailed
theoretical analysis presented in the Materials and Methods, where
we use complex systems theory and numerical simulations to
introduce and characterize a new reaction-diffusion system called
Sevilletor. The rest of the result section focuses on the application
of this system to study the qualitative behaviors of previous
somitogenesis models and to propose a novel somitogenesis model
where phase waves are formed with an excitable behavior.

Summary of the theoretical analysis of the Sevilletor system
We devised a minimal equation system called Sevilletor that couples
two self-enhancing reactants u and v with a negative feedback, and
limits the deviation of concentrations with cubic saturation terms,
see Fig. 2A and Eqns 1 and 2, introduced in detail in the Materials

Fig. 1. Previous models of somitogenesis. (A) During somitogenesis, coordinated genetic oscillations give rise to phase waves traversing the embryo from
the posterior (P) to the anterior (A) side, orchestrated by signals like Fgf and retinoic acid (RA). (B-D) Previous somitogenesis models show oscillations
emerging from delayed negative feedback (blue arrows) modulated by global frequency profiles (blue/white regions and clocks) or local cell communication,
influencing the formation and arrest of phase waves. (B) The Clock and Wavefront model (Cooke and Zeeman, 1976) features homogeneous phase
oscillations regulated by a global determination front. (C) The Clock and Gradient model (Morelli et al., 2009; Herrgen et al., 2010) exhibits phase waves due
to a monotonically decreasing frequency profile. (D) The Progressive Oscillatory Reaction-Diffusion model (Cotterell et al., 2015) forms phase waves with a
global frequency profile and arrest oscillations in a self-organizing manner.
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and Methods. On the one hand, the negative feedback between the
two reactants (k3 and k4) in the model promotes sustained
oscillations like the one generated by single reactant models with
a delayed negative feedback. On the other hand, varying the relative
self-enhancement strength of u and v (k1 and k2) promotes a
bifurcation from an oscillatory state around an unstable point to a
bistable state (Fig. 2A-C), adding two additional stable points close
to two additional unstable points (Fig. 2F; Fig. S4). This differs
from the bifurcations seen in classical models of wave formation
(FitzHugh, 1961; Cross and Hohenberg, 1993; Tyson and Keener,
1988), where the bistable regime is typically characterized by a

central unstable and two stable points (Fig. S3C).

@u

@t
¼ k1u� k3v� u3 þ Dr2u; ð1Þ
@v

@t
¼ k2vþ k4u� v3: ð2Þ

In addition, we observed that for different self-enhancement
strengths, diffusion of u between cells can give rise to five different
patterning behaviors from noise: lateral inhibition patterns, rotating
wave patterns, periodic wave patterns with spiral formation,

Fig. 2. Patterning behavior and bifurcations in the
Sevilletor equations. (A) The Sevilletor equations couple
self-enhancing reactants u and v with negative feedback.
k1 determines the strength of u self-enhancement
(k2,3,4=1). (B) Diffusion of u influences neighboring cell
behaviors in a 2D grid (green arrows). (C) Bifurcation
diagram for k1 in the Sevilletor equations, showing steady
state values of u. (D) Initial u conditions: homogeneous on
the left, with noise on the right. The size of the systems are
Lx=Ly=100 and D=0.3. (E) Two-dimensional simulations
with increasing k1: left column shows homogeneous
oscillatory or static patterns, right column shows lateral
inhibition, rotating waves, spirals, homogeneous patterns,
and salt and pepper bistable patterns (Movie 1). (F) Phase
spaces with increasing k1: nullclines of u (thick line) and v
(thin line), steady states (red and orange markers) and
vector field direction (arrowheads). The nullcline of u
changes shape with increasing values of k1, undergoing a
bifurcation at k1=2.3 gaining two stable states (red
markers) near to two unstable states (orange markers). All
parameters are shown in Tables S1 and S2 in
Supplementary Section S23.

3

RESEARCH ARTICLE Development (2024) 151, dev202606. doi:10.1242/dev.202606

D
E
V
E
LO

P
M

E
N
T

https://journals.biologists.com/dev/article-lookup/DOI/10.1242/dev.202606
https://journals.biologists.com/dev/article-lookup/DOI/10.1242/dev.202606
http://movie.biologists.com/video/10.1242/dev.202606/video-1
https://journals.biologists.com/dev/article-lookup/DOI/10.1242/dev.202606
https://journals.biologists.com/dev/article-lookup/DOI/10.1242/dev.202606


homogeneous patterns and bistable frozen patterns (right column in
Fig. 2E, Fig. 3G-J; Movie 1). An analysis with two-cell simulations
revealed that diffusion plays a different role in each of these
scenarios, as it can be seen by comparing the trajectories with and

without diffusion in phase space (Fig. 3A-F; Movies 2 and 3). It can
be either stabilizing (lateral inhibition) to freeze the oscillations of
neighboring cells in opposite phase generating chessboard patterns,
synchronizing to generate rotating waves, or destabilizing. In the

Fig. 3. Effect of k1, k2 and diffusion in
the Sevilletor equations. (A-F) Varying
k1 induces different behaviors in two cells
with opposite phases, with and without
diffusion (D=0.3 and D=0). Initial
conditions: (u, v)=(−0.1, 0) in first cell
(dark teal) and (u, v)=(0.1, 0) in second
cell (light teal). k3=k4=1. Left: trajectory of
two cells in phase space; right: phase of
one cell over time (calculation shown in
Fig. 6). Black and green arrows indicate
reaction and diffusion contributions,
respectively. (B) With k1=0, isolated cells
oscillate but stop when diffusion
counterbalances reaction (Movie 2).
(C) With k1=1, cells oscillate with and
without diffusion. (D) With k1=2.3, isolated
cells are in a bistable regime but can
excite each other to oscillate when
coupled by diffusion, generating a new
limit cycle (Movie 3; Supplementary
Section S3). (E) With k1=3, isolated cells
are in a bistable regime but can
synchronize oscillations and eventually
stop when coupled by diffusion. (F) With
k1=4, both isolated and coupled cells are
in a bistable regime. (G-J) Bifurcation
diagrams for k1 and k2 with associated
numerical simulations. (H) Two-
dimensional simulation with graded k1
along the y-axis and k2 along the x-axis
recapitulates all patterning behaviors
(Movie 5). Lx=Ly=100 and D=0.3.
(I,J) Number of oscillations quantified in
two-cell simulations for different k1 and k2
values extend the bifurcation diagram
(graded colors in I), showing different
patterning regimes promoted by diffusion
(colored regions in J). Black lines in I and
J depict bifurcations without diffusion. All
parameters are shown in Tables S1 and
S2 in Supplementary Section S23.
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latter case, cells are in a default bistable state and diffusion excites
neighboring cells in opposite phase to generate periodic phase
waves (Fig. 3D; Movie 3). A convenient feature of the Sevilletor
model is that a progressive change in the strength of k1 in the model
not only promotes a bifurcation from oscillation to bistability but it
also controls the distance between stable and unstable points within
the bistability regime (Fig. 2F), which determines the excitability of
the system. When this distance is small then diffusion can easily
excite the bistable state, whereas a larger distance decreases the
impact that diffusion has on the dynamics, lowering the excitability
of the system. A similar phase portrait was presented in Jutras-
Dubé et al. (2020) and François et al. (2007), however this novel
diffusion-driven excitable behavior has not been described
previously. This behavior differs from excitability in classical
models such as the FitzHugh-Nagumo (FitzHugh, 1961) and the
Complex Ginzburg-Landau (Tyson and Keener, 1988; Aranson and
Kramer, 2002), where excitatory dynamics typically emerge from
destabilizing a single stable point with a large stimulus, triggering
a temporary deviation from the equilibrium state of the system
(Fig. S3B) (Supplementary Section S3). In addition, this behavior
differs from a classical Turing instability (Turing, 1952) (Fig. S2;
Supplementary Section S2).
In the following section, we show that the different dynamical

behaviors are amenable to simulate the main patterning hypotheses
proposed to study mouse somitogenesis.

Sevilletor as a framework to study somitogenesis
Our goal is to compare the qualitative patterning behaviors of
different somitogenesis models by exploiting the dynamical
patterning regimes exhibited by the Sevilletor equations. Within
this context, our objective is to capture the qualitative aspects that
control the emergence of oscillations, phase waves, and the arrest of
oscillations in different models, rather than replicating the
quantitative details of each scenario. To do so, we modified the
Sevilletor equations by adding two spatial functions – R (regions)
and FG (frequency gradient) – that promote distinct modulations
along the anterior-posterior axis of the developing tail:

@u

@t
¼ ðk1 þ RÞu� ðk3 � FGÞv� u3 þ Dr2u; ð3Þ

@v

@t
¼ vþ ðk4 � FGÞu� v3: ð4Þ

We simulate these equations on a 2D growing rectangular grid of
virtual cells elongating at a constant speed along the x-axis,
representing the anterior-posterior axis of the developing tail
(Materials and Methods). Tail growth occurs via proliferation of
the posterior-most cells, generating a new line of cells inheriting
concentrations of reactants u and v (Fig. 4). The functions R and FG
have sigmoidal spatial profiles along the x-axis, defined as

Dki
1þ e�a�x, where x is the anterior-posterior spatial coordinate, Δki

is the amplitude of the sigmoid function, and a is its steepness.
The function R regionalizes the anterior-posterior axis into discrete

regions with different dynamical regimes using a steep sigmoid
function with a=1 that modulates parameter k1 step-wise in space.
Theoretical analyses in Figs 2 and 3 reveal k1 as a key parameter
promoting bifurcations and changes in dynamical behavior. This
modulation, for example, promotes a bifurcation from a posterior
oscillatory regime (k1<2.3) to an anterior bistable regime (k1≥2.3),
forming the basis to study cell commitment to somite formation as they
move anteriorly (Fig. 4A, B). This approach mimics the CW model

(Cooke and Zeeman, 1976) when R increases anteriorly with Δk1=3
and a=1, defining a moving wavefront that promotes cell commitment
to a specific phase. Such modulation resembles bifurcations observed
in Jutras-Dubé et al. (2020) and François et al. (2007) and in neural
tube patterning models (Panovska-Griffiths et al., 2013).

The function FG in Eqns 3 and 4 controls the strength of the
negative feedback between u and v (k3, k4), which, similar to the
strength of delayed negative feedback in single reactant models, is
linearly correlated with oscillation frequency (Fig. 4C).

A Sevilletor implementation of the PORD model
The first somitogenesis patterning hypothesis we explored is the
PORD model from Cotterell et al. (2015), in which somites are
formed in a self-organized manner (Supplementary Section S9).
Analyzing the original PORD model from Cotterell et al. (2015)
through two-cell simulations (similar to Fig. 3B), we discovered that
the pattern is formed by a diffusion-driven arrest of oscillations of
neighboring cells in opposite phases (Fig. S13). This behavior is
equivalent to the lateral inhibition case of the Sevilletor, and to the
original case of ‘stationary waves of extreme short wave-length’
introduced by Turing (1952), which differs from the model
presented in Wang et al. (2022) where cells are in a default stable
state in the absence of diffusion. Thus, to recreate the PORD model
within the Sevilletor equations, we assumed all cells in the tail are in
an oscillatory regime without regionalization (R=0), with
parameters k1=0 and D=1 to trigger lateral inhibition (Fig. S13B).

To form somites, the PORD model requires initial conditions
with an anterior pre-patterned somite, triggering a relay mechanism
that produces activator peaks spanning few cells as the tail grows.
Introducing a frequency gradient that decreases anteriorly with the
function FG with Δk3,4=0.3 and a=0.1 generates phase waves as in
the original PORD model (Fig. 4E,F; Movie 6). Subsequent studies
reformulated the PORD model, triggering relay mechanisms with a
gradient without the need for a pre-patterned somite (Pantoja-
Hernández et al., 2021; Kuyyamudi et al., 2022).

Our PORD implementation confirmed the fragility of this model
to spatial noise, consistent with studies by Pantoja-Hernández et al.
(2021). In both the original PORD model and our implementation,
noise disrupts the periodic somite patterns, resulting in a salt-and-
pepper pattern (Fig. 4G; Movie 6; Fig. S14). In summary, although
the lateral inhibition regime of the PORD model explains anterior
oscillation arrest through local cell communication without
changing the oscillatory regime, it forms periodic patterns with
peaks spanning few cells that are sensitive to noise.

A Sevilletor implementation of the CG model
The second somitogenesis patterning hypothesis that we explored
was the CG model, a popular reincarnation of the CW model in
which the frequency of the segmentation clock is modulated to
decrease progressively along the anterior-posterior axis, promoting
phase wave formation.

In our Sevilletor version of the CG model, both the initiation
and arrest of oscillations are emergent features of the dynamical
system (Fig. 4H,I; Movie 7). Nevertheless, the oscillatory regime
is equivalent to a series of coupled type IIIo oscillators (Cross
and Hohenberg, 1993) as in previous CG models (Fig. S9;
Supplementary Section S6) (Morelli et al., 2009; Herrgen et al.,
2010). The spatial frequency profile is introduced by decreasing the
feedback strength between u and v with the anteriorly decreasing
frequency gradient FG with Δk3,4=2 and a=0.1, similar to the PORD
model. In agreement with previous CGmodels, this frequency profile
generates phase waves that become thinner moving anteriorly, and
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freeze into periodic patterns entering the bistable determination front.
This is obtained with a bifurcation from oscillation to bistability
promoted by R (Δk1=3, a=1), similar to previous body segmentation
models (François et al., 2007; Jutras-Dubé et al., 2020).

As discussed in previous studies (Oates et al., 2012), variation of
the slope or position of the frequency gradient strongly influences
the phase wave patterns. The dependence of the model on the
frequency profile is also highlighted by the lack of phase waves in

Fig. 4. See next page for legend.
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the absence of a frequency gradient (Fig. S21J), and by the
progressive disorganization of the somite pattern when noise is
applied to FG (Fig. 4J). The model is, however, robust to cell
movements (Fig. S17).

The clock and wavefront self-organizing model
Motivated by the observation that in both the PORD and CG
models, phase waves arise owing to a frequency profile, we
investigated whether the CW model could be extended to form
phase waves via local cell-to-cell communication. Our aim was to
devise a model where PSM cells can form phase waves
independently of frequency gradients and can recapitulate the
excitability observed in vitro (Hubaud et al., 2017).
The foundational concept of this new model aligns with the basis

of our implementation of the CW (Fig. 4D), where cells oscillate
posteriorly, transitioning to bistability through a determination
wavefront. In our new CWS model (Fig. 4K), we introduced a third
discrete middle region in which cells have intermediate values of k1.
This is implemented with the function R that promotes a two step
change in k1 with a posterior and an anterior sigmoid starting from
k1=2.3:

R ¼ Dkanterior1

1þ e�a�xa �
Dkposterior1

1þ e�a�xp ; ð5Þ

where xp and xa are the x coordinates from the posterior and anterior
boundary respectively, Δk1,anterior=1.7 to promote bistability,
Δk1,posterior=1.3 to promote oscillations and a=1 to promote steep
sigmoids. In the intermediate region, cells are in the default
self-organizing excitable diffusion-driven behavior presented in
Fig. 3D and Movie 3, giving the name to the model: the Clock and
Wavefront Self-Organizing model (Fig. 4K; Movie 8).

The CWSmodel forms phasewaves in the absence of a frequency
gradient: FG=0 (white arrows, Fig. 4K). This is possible because of
the excitable behavior in the intermediate region for k1=2.3 that
gives rise to coordinated somitogenesis waves moving anteriorly
within the tail. The excitable behavior would generate periodic
phase waves with spirals starting from random initial conditions
(Fig. 2E), but within the tail the same behavior robustly propagates
phase waves because of the proximity to the oscillatory region in the
posterior end that initiates the waves (Figs S6,S7). Thus, the
patterning behavior in the intermediate part of the CWS model can
be described as a guided self-organizing process in which posterior
oscillations guide the phase waves that move anteriorly (Morales
et al., 2021). This is illustrated in simulations where the tail of the
CWS model is cut in two, separating the posterior from the middle
part of the tail. In agreement with previous experiments (Özelçi
et al., 2022), the simulations show that the posterior oscillations
guide the alternation of phases in the border to the excitable middle
region, whereas the propagation of waves is a self-organizing
process (Fig. S20; Supplementary Section S13; Movie 10).

When the posterior oscillatory region is expanded, the model
predicts the formation of multiple phase waves in the absence of a
frequency gradient, providing a possible explanation for the multiple
phase waves observed upon expansion and saturation of posterior
gradients in mouse mutants (Aulehla et al., 2008) (Fig. S21;
Supplementary Section S14). In addition, our analysis revealed that
the CWSmodel exhibits a high degree of patterning robustness when
exposed to multiplicative noise in comparable amounts with the
PORD and CG models (Materials and Methods; Fig. 4M; Movie 8).
We have further tested the CWS model to show that it is also
robust to cell movements (Fig. S17), hexagonal lattice (Fig. S26;
Supplementary Section S19), temporal fluctuations in noise
(Fig. S16; Supplementary Section S11), changes in the length of
the oscillatory posterior tailbud (Fig. S19; Supplementary Section
S12) and tail width (Fig. S18). The model can also recapitulate the
change in somite length observed with slower oscillations and tail
growth (Fig. S25; Supplementary Section S18; Herrgen et al., 2010;
Goudevenou et al., 2011).

Finally, our analysis revealed that the excitable behavior in the
intermediate part of the tail is possible for a broad set of intermediate
k1 values and diffusion constant D (Figs S10,S12), provided a
sufficiently small spatial discretization dx (Fig. S11).

Possible molecular implementations of the CWS model for
mouse somitogenesis
The general aim of this study was to explore how global and local
synchronization of oscillations drive somitogenesis in different
models, without capturing the underlying molecular details. The
Sevilletor equations can, however, also provide insights into the
minimal regulatory terms between two reactants that give rise to
specific patterning behaviors. In this section, we discuss two
alternative molecular interpretations for the CWS model and relate
each interpretation to experimental observations. We focus our
analysis on the negative feedback between u and v, which is the core
regulatory topology of the Sevilletor equations that implements a
delayed negative feedback without explicitly representing delays in
the equations (Casani-Galdon and Garcia-Ojalvo, 2022).

The first molecular interpretation is that the negative feedback
represents a transcriptional inhibition of Notch mediated by Hes/
Her proteins, a crucial motif in the vertebrate segmentation clock
(Takashima et al., 2011; Ay et al., 2013). In this interpretation, u
corresponds to Notch and v to a Notch signaling effector such Hes7
(Fig. 4N), with diffusion representing juxtacrine Notch signaling

Fig. 4. Previous somitogenesis models and Clock and Wavefront
Self-Organizing model in the Sevilletor framework. (A) Network diagram
of the Sevilletor equations. (B) Varying k1 transitions from oscillatory to
bistable states, shown by the bifurcation diagram. (C) Oscillation frequency
increases linearly with negative feedback loop strength (k3 and k4) for
k1<2.3. (D) Simulation of the Clock and Wavefront model (CW). As the tail
grows, adding a new line of cells at the posterior tip, cells exit an oscillatory
regime and enter a bistable determination front. (E,H,K) Two-dimensional
simulations of Sevilletor implementations of Progressive Oscillatory
Reaction-Diffusion (PORD), Clock and Gradient (CG) and Clock and
Wavefront Self-Organizing (CWS) models shown for v, with white arrows
indicating phase waves. Corresponding Figure for u is shown in Fig. S15
(Supplementary Section S10). (F,I,L) Average u (green) and v (blue) values
along the anterior-posterior axis of the simulations above. (G,J,M) Simulated
v patterns with added multiplicative noise to concentrations and parameters.
(E-G) The PORD model generates somites sequentially via a relay
mechanism triggered by a pre-patterned anterior somite (Movie 6).
A frequency gradient (white-blue gradient of k3 and k4) directs phase wave
formation, which is fragile to noise. (H-J) The Sevilletor implementation of
the CG model promotes phase wave formation with a frequency profile and
freezes oscillations with a determination front (Movie 7). Noise in the
frequency profile disrupts the pattern over time. (K-M) The CWS model adds
an intermediate excitability regime to the CW model, where phase waves
form without a frequency gradient (Movie 8). (N) Negative feedback between
u and v can be interpreted as a delayed inhibition of Notch. (O) Delayed
inhibition of Notch can coexist with feedback between Notch and Wnt,
coupling their oscillations. (P) The CWS model has feedback between
Wnt and Notch that drives out-of-phase oscillations in the posterior tip and
in-phase oscillations in the middle part, as observed in experiments by
Aulehla et al. (2003) and Sonnen et al. (2018). (Q) Simulation of the CWS
model with a graded modulation of k1 shows waves becoming thinner while
traveling anteriorly (Movie 9). All parameters are shown in Tables S3 and S4
in Supplementary Section S23.
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(Ferjentsik et al., 2009; Jiang et al., 2000). Our analysis suggests a
diffusion constant for Notch of ∼0.05 μm2/s to generate somites
every 2-3 h, consistent with juxtacrine signaling (Sonnen et al.,
2018; Matsuda et al., 2020).
The second molecular interpretation is that the negative

feedback represents coupling between Notch and Wnt signaling
pathways, in accordance with their coordinated oscillations
during mouse somitogenesis (Aulehla et al., 2003; Sonnen et al.,
2018). Perturbation experiments support this hypothesis, showing
entrainment between Wnt and Notch oscillations (Sonnen et al.,
2018). In this scenario, u represents Wnt and v Notch. An extended
model presented in Supplementary Section S5 (Fig. S8)
demonstrates that the Wnt-Notch feedback can coexist with a
delayed negative feedback of Notch to drive sustained oscillations
(Fig. 4O). For simplicity, in the rest of the study, we considered a
reduced model with only the negative feedback between Wnt and
Notch, which is sufficient to drive oscillation and to couple the two
signaling pathways (Fig. 4P).
This molecular interpretation predicts that Wnt and Notch

oscillate out of phase posteriorly and in phase in the middle part
of the tail, consistent with previous findings (Aulehla et al., 2003;
Sonnen et al., 2018) (Fig. 4L). This relative phase change arises as
the cells move from the oscillatory posterior part with oscillations
with a phase shift around an unstable state, to the excitable region
where the cells have a long permanence time around the stable states
where Wnt and Notch are in phase (Fig. S24; Supplementary
Section S17). This is possible only when Notch has a negative
influence on Wnt in agreement with Acar et al. (2021), and when
Wnt has a positive influence on Notch, as previously proposed in
Aulehla et al. (2003) and Gibb et al. (2009), see Supplementary
Section S16 (Fig. S23). This phase shift is also observed in an
extended CWS model with graded k1 modulation capturing wave
thinning and the faster propagation of Notch waves with respect to
Wnt waves (Sonnen et al., 2018) (Fig. 4Q; Movie 9).
Finally, in agreement with previous measurements (Hatakeyama

et al., 2023; Kicheva et al., 2007), this implementation predicts that
Wnt diffusion must be in the order of 0.05 μm2/s to generate somites
every 2-3 h (see Supplementary Section S22). Importantly, adding
diffusion of Notch or higher levels of Wnt diffusion does not alter
the qualitative behavior of the model (Fig. S22; Supplementary
Section S15).

The excitability of the CWSmodel recapitulates the behavior
of the mouse PSM in vitro
A previous study has shown that mouse PSM cells stop Notch target
oscillations like Lfng at low density in vitro cultures on fibronectin,
but can be excited to oscillate when the density is increased (Hubaud
et al., 2017). The excitable behavior of the CWS model offers a new
mechanistic explanation for this phenomenon. Indeed, we found that
increasing the distance between two cells beyond 60 μm in the model,
led to the spontaneous arrest of oscillations (Fig. 5A). The model
displays identical bistable phase portraits in the low and high cell
density situation (see red and orange points in Fig. 5B), but as the
distance between cells increases, the weaker diffusion effect fails to
push Wnt and Notch out of bistability toward the trajectory of the
nearest unstable points, explaining the arrest of oscillation (see green
arrows in Fig. 5B). This diffusion-driven excitable behavior differs
from the one of the FitzHugh Nagumo equations used in Hubaud
et al. (2017) (see Supplementary Section S3) and recapitulates the
effect of cell density without changing other parameters in the model.
In addition, our analysis revealed that excitability in the CWS

model depends not only on the distance between cells, but also on

the distance between stable and unstable steady states in phase space
(Materials and Methods). Previous experiments have proposed that
inhibiting Notch signaling reduces the stimulus that triggers
excitability, leading to the arrest of oscillations observed in the
LuVeLu reporter (Hubaud et al., 2017) (Fig. 5C). In the CWS
model, the self-enhancement of Notch can be interpreted as positive
feedback in response to autocrine Notch signaling (Bone et al.,
2014). Notably, inhibiting Notch self-enhancement in the model
results in oscillation arrest even at high density (Fig. 5C-E), by
increasing the distance between stable and unstable steady states,
thereby elevating the excitability threshold of cells (see red and
orange points in Fig. 5E).

In a similar vein, our model suggests that the oscillations observed
in low-density cultures on fibronectin upon Yap signaling inhibition
(Hubaud et al., 2017) may be attributed to a decrease in the distance
between stable and unstable steady states, lowering the excitability
threshold. Although themechanism bywhichYap signaling normally
increases this threshold remains unclear, one possibility is that Yap
inhibits Notch signaling. However, upregulation of Notch signaling
via Dll1 addition in low-density cultures is insufficient to rescue
oscillations (Hubaud et al., 2017). An alternative prediction of our
model is that Yap may promote Wnt auto-activation, associated with
higher values of k1 that increase the excitability threshold, shown in
Fig. 2F for k1≥2.3. This hypothesis is consistent with the observation
that fibronectin increases from posterior to anterior in the chick PSM
(Duband et al., 1987) increasing Yap (Hubaud et al., 2017), which in
turn could increase the rate of Wnt auto-activation (k1) as shown in
Fig. 4Q, owing to cross-talk between the pathways (Jiang et al., 2020).
A direct way to test this hypothesis would be to check whether the
inhibition of canonical Wnt signaling can rescue the oscillation of
PSM cells in low density culture grown on fibronectin.

Finally, another prediction of our model is that the diffusion-
driven excitable behavior arises between cells that lie in opposite
half-planes in phase space (seeMovie 3 and Fig. 3D). This promotes
oscillations that originate from the destabilization of opposite stable
states leading to out-of-phase oscillations in neighboring cells.
Intriguingly, a quantification of the oscillations observed in the low-
density culture shown in Hubaud et al. (2017) revealed that
neighboring cells oscillate out of phase in agreement with the
prediction of the model (Fig. S32; Supplementary Section S21).

Next, we explored how local cell communications contribute to
generating coherent somitogenesis wave patterns in virtual explants
of the PORD, CG and CWS models.

Explants of the PORD, CG and CWS models
In our tail simulations of the Sevilletor implementations of the
PORD, CG and CWS models shown in Fig. 4E, H, K, consistent
periodic somitogenesis patterns emerge because of synchronization
of oscillations in the PSM but also owing to the growth dynamics
and geometry of the tail, which act as global patterning cues. Tail
explants enable examination of PSM patterning behavior when
these guides are perturbed. Previous studies have shown that
explants can generate sequential waves of Notch signaling that
propagate from the center of the explant, resembling somitogenesis
(Lauschke et al., 2013; Hubaud et al., 2017; Tsiairis and Aulehla,
2016). Depending on the protocol used, the waves ceased after a few
cycles, together with re-establishment of global signaling gradients
(Lauschke et al., 2013), or persisted over 2 days in the presence of
activators of Fgf and inhibitors of RA, among others, without
detected graded signals of Fgf targets (phosphorylated ERK and
Spry2) (Hubaud et al., 2017) (detailed description in Supplementary
Section S20).
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As our study focuses on understanding the mechanisms that drive
the spatial synchronization of oscillations, we conducted virtual
explant simulations to investigate initial formation of traveling
waves observed in Lauschke et al. (2013) and Hubaud et al. (2017).
A virtual explant is created by projecting a part of the tail into a
circular domain, with the most posterior end at the center and the
most anterior part at the outer edge (Fig. 5G) (more details provided
in Supplementary Section S20: Detailed description of explant
simulations and experiments). Given uncertainty about whether
these waves depend on global signals or local communication, we
simulated explants with varying levels of guiding cues that can be

provided by re-established frequency gradients FG (k3 and k4) and
the phase values that the cells had in the tail at the time of dissection
(u and v) (Fig. 5H-M).

Our simulations showed that, when cells inherit phase values, our
PORD explants tended to form chessboard patterns even in the
presence of frequency gradients (Fig. 5H; Fig. S30B), while they
gave rise to homogeneous oscillation starting from the same initial
phase. This is due to the model’s intrinsic tendency to generate
lateral inhibition patterns (Supplementary Section S9). On the other
hand we observed that when CG explants inherit phase values, they
are able to self-organize to form circular wave patterns even in the

Fig. 5. The CWS model recapitulates the behavior of the mouse PSM in vitro. (A) Simulations of two cells in the CWS excitable regime that are excited
to oscillate at high density (12 μm distance) and stop oscillating in low density (60 μm distance), as observed in Hubaud et al. (2017) (model units estimated
in Supplementary Section S22). (B) Phase spaces show that when cells are in high density they excite each other to oscillate, leaving stable states
(red dots), towards the trajectory of the unstable states (orange dots) due to the stronger contribution of diffusion (green arrows). (C) Simulation of two cells in
the CWS excitable regime where oscillations are dampened and stopped by inhibiting Notch, as seen in Hubaud et al. (2017). (D) Illustration of Notch
inhibition in the Sevilletor network (k2=0). (E) Phase spaces showing altered nullcline of Notch with inhibition, increasing the excitability threshold (black
marker). (F) Illustration of circular signaling waves formation in mouse presomitic mesoderm (PSM) explants. (G) Illustration of how virtual explant simulations
are created, with a radial projection and mixing of cells from the simulated tails. (H,J,L) Explants from the whole posterior part of the Sevilletor
implementations of the PORD, CG and CWS models under different guiding cues shown for v (illustrated in the top row). Corresponding Figure for u shown
in Fig. S27. (I,K,M) Explants from the middle part of the tail with phase values inherited from the tail. (H,I) PORD explants form chessboard patterns with the
FG gradient and/or phase values, and homogeneous oscillations form from the same initial phase (without phase values pre-pattern in the third explant in H).
(J,K) CG explants form circular waves with a gradient FG and/or phase values, and homogeneous oscillations from the same initial phase (third explant in J).
(L,M) CWS explants do not possess frequency gradients and form circular waves, even starting from the same initial phase (Movies 11 and 12). All
parameters of the simulations are shown in Table S5 (A-E) and Tables S6 and S7 (H-M) in Supplementary Section S23.
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absence of frequency gradients. Yet, they form homogeneous
oscillations starting from the same initial phase (Fig. 5J; Fig. S30C).
Finally, we found that CWS explants can form circular wave
patterns even when cells have the same initial phase value and in the
absence of frequency gradients (Fig. 5L; Movie 11; Fig. S30D).
Ablating the central population in this explant, as in previous
experiments (Hubaud et al., 2017), still generates periodic waves
that progressively disorganize or dissipate depending on initial
phase values (Fig. S29). Moreover, circular wave patterns can also
be observed in CWS explants derived solely from the middle part
of the tail, where all cells are in the excitable regime (Fig. 5M;
Fig. S31) independent of a central cell population (Movie 12).
To further test the self-organizing capacity of virtual explants in

the CG and CWS models, we randomized cell positions to disrupt
any pre-pattern inherited from the tail. Similar experiments (Tsiairis
and Aulehla, 2016; Hubaud et al., 2017) have been performed by
centrifuging cells from tails of different mouse embryos. Our
simulations revealed that, in both the CG and CWS models, mixed
explants form rotating wave patterns (Fig. S28; Movie 13) that arise
from the local synchronization between cells with different phase
values (Uriu et al., 2021).
It remains unclear how these coordinated rotating patterns emerge

in mixed explants. Future experiments could explore these self-
organizing behaviors further by mixing the intermediate part of
multiple tails to maximize the initial heterogeneity of phase values
in the explants. Evaluation and removal of potential re-established
gradients such as Fgf should also be performed and a non-adherent
culture should be used to eliminate potential guiding cues.

DISCUSSION
During embryonic development, cells need to coordinate their
behaviors to form coherent spatial patterns that drive tissue
specification. One way to achieve this coordination is by responding
to global signals, such as morphogen gradients that provide positional
information to the cells (Wolpert, 1969). Alternatively, self-organizing
spatial patterns can be formed by coupling cell-autonomous behaviors
at the tissue level through local cell communication (Turing, 1952). In
addition, increasing evidence is showing that these two patterning
strategies are not exclusive and that embryonic development is often
controlled by self-organizing processes guided by external global
signals (Morales et al., 2021).
The sequential waves of gene expression observed during

vertebrate somitogenesis are a striking example of this coordination
that arise from the spatial synchronizations of genetic oscillations. In
this study, we introduced a system of equations named Sevilletor to
investigate how oscillations can be synchronized by global spatial
modulations or local cell-to-cell communication.We showed that this
minimal phenomenological framework can be used to compare the
qualitative behaviors of different somitogenesis models, such as the
CW model (Cooke and Zeeman, 1976), the PORD model (Cotterell
et al., 2015) and the CG model (Morelli et al., 2009; Herrgen et al.,
2010; Jörg et al., 2016).
Using this phenomenological framework, we remain neutral

regarding the source of global spatial modulation that controls
oscillation arrest, which could arise from morphogen gradients or
cell-autonomous regulations (Rohde et al., 2021 preprint; Boareto
et al., 2021). Instead, we explore whether phase wave formation and
the excitability of mouse PSM observed in vitro can be driven by
local cell communication.
As, in our basic implementation of the CW model, posterior

cells were in an oscillatory regime and anterior cells in a bistable
regime, we envisioned an extended CW model where intermediate

cells are in a novel diffusion-driven excitable regime (Movie 3).
Remarkably, cells in the intermediate region were able to sustain
and propagate phase waves independently of global frequency
gradients, solely relying on local cell interactions showing a high
degree of robustness (Movie 8). We named this model the CWS
model to highlight the hypothesis that intermediate cells are in a
self-organizing regime.

The key distinction between the PORD, CG and CWSmodels lies
in how phase waves emerge. In the PORD and CG model, phase
waves arise within a pure oscillatory state via frequency modulation
along the anterior-posterior axis, governed by parameters k3 and k4
in the Sevilletor equations (Fig. 4H). In contrast, in the CWSmodel,
phase waves emerge at the interface between an oscillatory state and
bistability, modulated by parameter k1 along the anterior-posterior
axis (Fig. 4K). This is promoted by the excitation of PSM cells that
are in a bistable state, which differs from the default behavior of
PSM cells in zebrafish (Maroto et al., 2005; Masamizu et al., 2006)
and aligns with the excitable behavior of mouse PSM cells in vitro
(Hubaud et al., 2017).

In a previous study, this excitable behavior was investigated using
a single-cell model based on the FitzHugh-Nagumo equations. The
difference between low- and high-density cultures in this model was
simulated by adjusting the magnitude of a stimulus that can excite a
single stable steady state (Hubaud et al., 2017). In contrast, in the
CWS model the transition from a quiescent to an oscillatory state
emerges from a bistable regime. In this case, cells are excited to
oscillate by the stronger influence of diffusion at high density,
without having to change any other parameters in the model
(Fig. 5A; Supplementary Section S3).

We further hypothesized that, alongside the cell-autonomous
negative feedback of Notch (Takashima et al., 2011; Ay et al., 2013),
the segmentation clock underlying the CWS model might involve a
negative feedback loop between Notch andWnt signaling, consistent
with previous observations in mouse (Aulehla et al., 2003; Sonnen
et al., 2018). According to this assumption, the model recapitulated
that Notch and Wnt oscillate out of phase in the posterior part of the
tail, but oscillate in phase in the middle part (Aulehla et al., 2003;
Sonnen et al., 2018), coinciding with excitability and phase wave
formation. Additionally, our analysis revealed that the excitability of
the CWS model is determined by the distance between stable and
unstable states in phase space. This insight helped us interpret the
arrest of oscillations upon Notch signaling inhibition in high-density
cultures and the induction of oscillations upon Yap inhibition in low-
density cultures as changes in excitability (Hubaud et al., 2017).
Moreover, it suggested that Yap may increase the excitability
threshold of the mouse PSM by modulating Wnt signaling via the
known cross-talk between the two pathways (Jiang et al., 2020).

Finally, we conducted virtual explant simulations to further
assess the self-organizing capabilities of the CG and CWS models.
These simulations aimed to examine the behavior of mouse PSM
cells outside the embryonic context, which can generate coherent
circular wave patterns despite significant cell re-arrangements
(Lauschke et al., 2013; Hubaud et al., 2017). We found that both the
CG and the CWSmodels can form coherent circular phase waves in
the absence of frequency gradients if the cells inherit the phase
values possessed in the tail. On the other hand, we found that the
CWS model could also form coherent wave patterns starting from
homogeneous phase values.

In a broader context, the Sevilletor model offers a minimal
theoretical framework for exploring multicellular pattern formation via
synchronized oscillations. Our study focuses on phase wave formation
and excitability, specifically examining the interplay between Notch

10

RESEARCH ARTICLE Development (2024) 151, dev202606. doi:10.1242/dev.202606

D
E
V
E
LO

P
M

E
N
T

https://journals.biologists.com/dev/article-lookup/DOI/10.1242/dev.202606
http://movie.biologists.com/video/10.1242/dev.202606/video-11
https://journals.biologists.com/dev/article-lookup/DOI/10.1242/dev.202606
https://journals.biologists.com/dev/article-lookup/DOI/10.1242/dev.202606
https://journals.biologists.com/dev/article-lookup/DOI/10.1242/dev.202606
http://movie.biologists.com/video/10.1242/dev.202606/video-12
https://journals.biologists.com/dev/article-lookup/DOI/10.1242/dev.202606
http://movie.biologists.com/video/10.1242/dev.202606/video-13
http://movie.biologists.com/video/10.1242/dev.202606/video-3
http://movie.biologists.com/video/10.1242/dev.202606/video-8
https://journals.biologists.com/dev/article-lookup/DOI/10.1242/dev.202606


and Wnt signaling pathways during mouse somitogenesis. However,
the Sevilletor equations can generate various patterns with minimal
parameter changes, including lateral inhibition chessboard patterns like
thosemediated by the Notch signaling in retina (Formosa-Jordan et al.,
2013) and inner ear development (Adam et al., 1998; Petrovic et al.,
2014). As has been previously suggested, modulators and co-factors
may influence the timing or strength of the Notch pathway, promoting
different patterning outcomes such as lateral inhibition or phase wave
synchronization (Liao and Oates, 2017). Looking ahead, we anticipate
that our framework could be used to explore how changes in signaling
pathway feedback drive different self-organizing behaviors.

MATERIALS AND METHODS
Theoretical analysis of the Sevilletor system
We devised the Sevilletor equations as a minimal reaction-diffusion system
to study how genetic oscillations can synchronize and self-organize in space
through local cell-to-cell communication (Fig. 2A,B). The following section
is dedicated to present theoretical properties of the network, and assumes
that the reader is familiar with some aspects of complex systems theory, such
as the notion of steady states, stability analysis, bifurcation diagrams and
phase portraits (Murray, 2002; Sneppen, 2014).

The system consists of two partial differential equations representing
interactions between two reactants named u and v (Eqns 1 and 2). The
dynamics of the system are centered around the fixed point (u*, v*)=(0, 0),
which represents intermediate concentrations. However, the equations can
be easily adjusted to form only positive values without affecting the
behavior of the system (see Supplementary Section S1 and Fig. S1).

The core of the system is a negative feedback between the two reactants
u and v, controlled by the rates k3 and k4, which gives rise to a limit cycle
centered on (u*, v*) that promotes oscillations. This is the simplest regulatory
logic that can generate oscillations without explicitly adding delays to
equations (Casani-Galdon and Garcia-Ojalvo, 2022). The sustained
oscillations generated by this model are equivalent to the one generated by
a single reactant model with a delayed negative feedback through a
sufficiently large monotonically decreasing function (Lewis, 2003).

In addition, the model considers cubic saturation terms that limit the
deviation of concentration from the fixed point (u*, v*). These negative
saturation terms should not be interpreted as degradation terms, but rather as
an effective symmetric saturation for concentrations that are far from the
fixed point but without significant effects for concentrations closer to the
fixed point.

Finally, the model includes two positive self-regulatory feedbacks for each
reactant, controlled by k1 and k2, which, together with saturations, determine
the number of fixed points of the system. Overall, the Sevilletor equations can
be viewed as an extension of the first-order formulation of the Van Der Pol
oscillator (FitzHugh, 1961) (Supplementary Section S3) with an additional
linear self-enhancing feedback and cubic saturation term in Eqn 2.

To characterize the behavior of the system, we focused our analysis on the
effect of the positive feedbacks k1 and k2, as these are the two key parameters
that drive bifurcations. We generally consider the non-dimensionalized
version of the model for k2 by rewriting the system as k2→1, k1/k2→k1, k3/
k2→k3 and k4/k2→k4. Importantly, for each set of reaction parameters, we
also investigated the behavior of the system in the presence of diffusion by
allowing the reactant u to diffuse with diffusion constant D=0.3. For
simplicity, we considered the reactant v to be immobile, as spatial coupling
with the diffusion of one reactant (u) is enough to synchronize oscillations in
space and to promote self-organizing patterning behaviors (Prigogine and
Lefever, 1968; Nicolis and Prigogine, 1977; Field and Noyes, 1974;
Cotterell et al., 2015). In our full somitogenesis model Eqns 3 and 4,
however, we also explored the case where v diffuses and find equivalent
theoretical predictions (Fig. S22).

Self-enhancement strength and initial conditions determine Sevilletor
patterning dynamics
The bifurcation diagram in Fig. 2C shows how k1 affects the number of
steady states and their stability. For all values of k1, there is an unstable
steady state at (u*, v*)=(0, 0), and for k1≥2.3 the system undergoes a

bifurcation that adds four additional steady states (Fig. 2F). The two steady
states furthest away from the center are stable, whereas the other three are
unstable. This bifurcation is illustrated by 2D numerical simulations started
with homogeneous initial conditions (Fig. 2D,E, left column), showing
homogeneous synchronized oscillations for 0≤k1<2.3 and homogeneous
static patterns for k1≥2.3 associated with bistability.

Starting from random initial conditions, however, numerical simulations
show a variety of complex oscillatory and static patterns (Fig. 2E, right
column) depending on the parameter k1 (Movie 1). These include lateral
inhibition patterns for k1=0, which are characterized by cells with alternating
opposite concentrations, rotating waves when k1=1, periodic wave patterns
for k1=2.3, propagating bistable fronts that generate homogeneous static
patterns when k1=3 and bistable frozen states for k1=4 (Movie 1). These
complex patterns arise because of the combination of reaction and diffusion
in the system. As classic phase portraits only take into account the
contribution of reactions, we extended our complex system analysis to study
how phase portraits change with diffusion between two cells.

The effect of cell-to-cell communication on patterning behaviors
We use a simplified version of the Sevilletor with only two cells to study
how diffusion affects the patterning behavior. The cells start with a
heterogeneous initial state with (u1, v1)=(0.1, 0) and (u2, v2)=(−0.1, 0). We
run two simulations for each representative value of k1: one without
diffusion (D=0), and one with diffusion (D=0.3) (Fig. 3B-F). Without
diffusion, each cell acts as an individual unit and its behavior depends solely
on changes driven by reaction (Fig. 3B-F, left columns). This case
corresponds to the behavior seen in square 2D simulations with a
homogeneous initial state (Fig. 2E, left column), as when every cell has
the exact same amounts of u and v there is no active contribution from
diffusion, i.e. r2u ¼ 0. By including cell communication in the form of
diffusion of u (Fig. 3B-F, right columns), the combined effect of reaction
and diffusion coordinates the behavior of the two cells, giving rise to large
scale patterns.

With k1=0 and k1=1, the cells oscillate individually in the limit cycle
without diffusion. For k1=0, with diffusion these oscillatory trajectories are
counterbalanced and stabilized by the effect of diffusion (Fig. 3B; Movie 2)
(Singh and Sinha, 2013). Our 2D simulations show that this behavior
generates a lateral inhibition (chessboard) pattern from noise (Fig. 2E; first
column in Movie 1). With k1=1, with diffusion the cells continue to oscillate
by following a smaller limit cycle that, in the long run, synchronizes the two
cells together as in a type IIIo system (Cross and Hohenberg, 1993) (Fig. 3C).
Using random initial concentrations that lay on one of the half planes, this
behavior is associated with homogeneous oscillations (Fig. S7;
Supplementary Section S4). However, starting from random initial
concentrations spread on the two half planes, the system generates rotating
spirals similar to those formed by a diffusive Van der Pol oscillator (Fig. 2E,
right column; Fig. S5C; second column in Movie 1).

At the bifurcation point k1=2.3, in the absence of diffusion, the two cells
do not oscillate and are trapped at the nearest stable state on the upper or
lower half plane (Fig. 3D). When diffusion is added, however, the
equilibrating effect of diffusion pushes cells out of stability towards the
trajectory of the closest stable point (green arrows in Fig. 3D). Following
this trajectory, each cell goes to the opposite half-plane towards the stable
steady state, and it is again destabilized by diffusion. The repetition of this
process generates a novel limit cycle that keeps cells oscillating (Movie 3).
This new limit cycle generates in-phase oscillations of u and v, because the
permanence time around the stable states is greater than the time it takes to
follow the trajectory to the opposite half-plane. In 2D simulations with
random initial conditions, these dynamics give rise to a new type of
diffusion-driven excitable periodic wave pattern with spiral formation that,
to the best of our knowledge, has not been described previously (Fig. 2E;
third column in Movie 1) (see detailed analysis in Supplementary Section
S3). The pattern looks very similar to those formed by classic models of the
Belousov-Zhabotinsky reaction (Zhabotinsky and Zaikin, 1973) such as the
Brusselator (Prigogine and Lefever, 1968) and Oregonator (Field and
Noyes, 1974); however, it emerges from a different dynamical behavior that
has not been described in previous models (Supplementary Section S3). The
limit cycle that underlies periodic wave patterns is possible for a variety of
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values of k1 and diffusion constant D (Fig. S10; Supplementary Section S7)
and spacial discretisation (Fig. S11; Supplementary Section S8).

This dynamical behavior changes for larger values of k1. For example, for
a self-enhancement strength with k1=3, a few oscillations are stimulated, but
the two cells eventually freeze together at the same stable state (Fig. 3E).
This makes a propagating front that covers the whole domain in square 2D
simulations (Fig. 2E; fourth column of Movie 1). For even stronger self-
enhancement with k1=4, the distance between stable states and saddle points
is too large for diffusion to impact the trajectory of the cells (Fig. 3F),
making a static bistable frozen pattern that amplifies the pre-pattern present
in the initial conditions (Fig. 2E; fifth column of Movie 1).

A characteristic of the Sevilletor system is that its patterning dynamics can
be changed by varying just the parameter k1. This property can also be
exploited to easily switch between different patterning behaviors over time
(Movie 4).

The relative self-enhancement strength and diffusion determines the
dynamical behavior of the system
To further characterize the effect of both self-enhancements, we performed a
2D simulation of the full system with Eqns 1 and 2 by increasing the values
of k1 and k2 along the y- and x-axis to recapitulate all the different dynamical
behaviors of the system within the same simulation (Fig. 3H; Movie 5). The
corresponding 2D bifurcation diagram (Fig. 3I) shows the bifurcation
between 1, 5 and 9 steady states. This bifurcation diagram was further
divided into regions of different patterning behaviors by calculating the
number of oscillations of a series of two-cell simulations with diffusion (as
in Fig. 3B-F right columns) for each combination of parameters (k1, k2) in a
100×100 grid for a total of 10,000 two-cell simulations (Fig. 3I). This
allowed us to derive an extended bifurcation diagram in which different
colored regions correspond to the different dynamical behaviors that the
system can generate with diffusion (Fig. 3J). This extended bifurcation
diagram shows that, starting from random initial conditions, the relative
self-enhancement strength of k1 and k2 together with diffusion determine the
different patterning behaviors of the system.

Quantification and statistical analysis
Stability and types of steady states
The steady states of the Sevilletor model and their properties are calculated
using a phase plane analysis (Murray, 2002). The steady states of a system

are all pairs (u*, v*) for which f ðu�; v�Þ ¼ @u

@t ðu� ;v�Þ
¼ 0 and

gðu�; v�Þ ¼ @v

@t ðu� ;v�Þ
¼ 0. The stability of the steady states are found by

using linear stability analysis from the determinant and trace of the matrix A:

A ¼
@f

@u

@f

@v
@g

@u

@g

@v

0
B@

1
CA: ð6Þ

For Det(A(u*,v*))>0 and Trace(A(u*,v*))<0 the steady state is stable, otherwise
it is unstable. The type of steady state is identified as discussed in Appendix

A in Murray (2002) and describes the shape of the vector field around the
steady state.

Calculation of the phase and the number of oscillations of two cell
simulations
The phase in Fig. 3 is calculated, at every time point, as the angle between
the initial position and the position of the cell in phase space around the
central unstable steady state in (u, v)=(0, 0).

PhaseðtÞ ¼ arccos
uð0Þ; vð0Þ½ � � uðtÞ; vðtÞ½ �

j uð0Þ; vð0Þ½ �j � j uðtÞ; vðtÞ½ �j
� �

: ð7Þ

The number of oscillations Fig. 3 is determined by counting the local
minima that are close to zero along the phase profile, excluding the first
minimum for t=0 (see Fig. 6 for calculation).

Simulation details
Simulations are run with a finite difference solver written in Julia 1.6.4. The
complex systems analysis and two-cell simulations have been run in
Mathematica 12, and Fiji (ImageJ) has been used to analyze the patterns
seen in the simulated and experimental explants. Python 3.8.10 is used to
create all plots, excluding the phase spaces and bifurcation diagrams, which
have been generated using Mathematica 12.

Time discretization
In all simulations, we discretize time using a Euler method to update the
values of u and v for each cell in the system with position (x, y):

f ¼ @u

@t
; ð8Þ

g ¼ @v

@t
; ð9Þ

uðx; y; t þ dtÞ ¼ uðx; y; tÞ þ dt � ð f ðuðx; y; tÞ; vðx; y; tÞÞ þ Dr2uðx; y; tÞÞ ;
ð10Þ

vðx; y; t þ dtÞ ¼ vðx; y; tÞ þ dt � gðuðx; y; tÞ; vðx; y; tÞÞ: ð11Þ
The values used forD and dt are given in Tables S1-S7 in Supplementary

Section S23.

Space discretization
The diffusion term r2uðx; yÞ in the system is calculated using a first order
finite difference scheme to calculate the discrete Laplace. This is done by
using a Taylor expansion of the functions u(x, y, t) and v(x, y, t) around the
steady state (0,0). ε = dx=dy in the following. For u the calculations are:

uðxþ e; yÞ ¼ uðx; yÞ þ e
@uðx; yÞ

@x
þ e

@uðx; yÞ
@y

þ 1

2
e2

@2uðx; yÞ
@x2

þ 1

2
e2

@2uðx; yÞ
@y2

; ð12Þ

Fig. 6. Details of the calculation of phase and number of oscillations in Fig. 3. (A) The timeline shows the path of a cell in the phase space. The phase
is calculated for each time point, starting from 0, increasing to π for half a loop, and decreasing back to 0 for the second half of the loop. (B) The phase is
plotted as a function of time and the number of oscillations is measured as the number of local minima in phase=0 excluding the initial minimum for t=0,
marked by black points.
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uðx� e; yÞ ¼ uðx; yÞ � e
@uðx; yÞ

@x
� e

@uðx; yÞ
@y

þ 1

2
e2

@2uðx; yÞ
@x2

þ 1

2
e2

@2uðx; yÞ
@y2

; ð13Þ

uðx; yþ eÞ ¼ uðx; yÞ þ e
@uðx; yÞ

@x
þ e

@uðx; yÞ
@y

þ 1

2
e2

@2uðx; yÞ
@x2

þ 1

2
e2

@2uðx; yÞ
@y2

; ð14Þ

uðx; y� eÞ ¼ uðx; yÞ � e
@uðx; yÞ

@x
� e

@uðx; yÞ
@y

þ 1

2
e2

@2uðx; yÞ
@x2

þ 1

2
e2

@2uðx; yÞ
@y2

: ð15Þ

We isolated the first order differential terms in the equations and
combined the equations to get:

@2uðx; yÞ
@x2

þ @2uðx; yÞ
@y2

¼

uðxþ e; yÞ þ uðx� e; yÞ þ uðx; yþ eÞ þ uðx; y� eÞ � 4uðx; yÞ
e2

:

ð16Þ

Similar calculations are also performed for v. The values used for dx are
given in Supplementary Section S23, Tables S1-S7.

Boundary conditions
In all simulations, except the one in Fig. S6B, we considered zero flux
Neumann boundary conditions. This means that nothing diffuses between
the outside and inside of the system, i.e. the Laplace is equal to zero at the
boundaries. The Laplace at the boundary is derived as:

@uðx; yÞ
@x

¼ uðxþ e; yÞ � uðx� e; yÞ
2e

¼ 0; ð17Þ
@uðx; yÞ

@y
¼ uðx; yþ eÞ � uðx; y� eÞ

2e
¼ 0: ð18Þ

This leads to:

uðxþ e; yÞ ¼ uðx� e; yÞ; ð19Þ
uðx; yþ eÞ ¼ uðx; y� eÞ: ð20Þ

Inserting the appropriate substitutions (Eqns 19 and 20) for the edge/
corner into the discrete Laplace Eqn 16 gives the correct formula, for
example for the bottom left corner (x, y)=(1, 1) in Eqn 21:

@2uðx; yÞ
@x2

þ @2uðx; yÞ
@y2

¼ 2uðxþ e; yÞ þ 2uðx; yþ eÞ � 4uðx; yÞ
e2

: ð21Þ

The periodic boundary conditions used for the simulation in Fig. S6B are
also calculated using the discrete Laplace, treating cells on the boundaries as
direct neighbors with cells on the corresponding boundary. For example, for
the cell in the bottom left corner (x, y)=(1, 1) in a systemwhere the lengths of
the axes are L:

@2uðx; yÞ
@x2

þ @2uðx; yÞ
dy2

¼

uðxþ e; yÞ þ uðL; yÞ þ uðx; yþ eÞ þ uðx; LÞ � 4uðx; yÞ
e2

:

ð22Þ

Noise
Multiplicate noise is added to the simulations shown in Fig. 4G,J,M and
Fig. S16. For each cell i the noise is added in the following way at t=division:

ui ¼ ui þ ui � du � m;

vi ¼ vi þ vi � dv � m;

where μ is a normally-distributed random number with mean 0 and standard
deviation 1. The amplitude δ is used to scale the noise to a set percentage of
the relevant value (u/v/k1/k3/k4).

For the parameters k1, k3 and k4, noise is added to the 1D arrays along the
x-axis at each position j at t=division with amplitudes δk:

k1;j ¼ k1;j þ k1;j � dk1 � m;

k3;4;j ¼ k3;4;j þ k3;4;j � dk3;4 � m:

The same array is used for k3 and k4. The noise is added to the complete
arrays of the parameters, so that as the tail grows, the most anterior parts of
the arrays continuously have the same average amount of accumulated noise
as the posterior part.

In Fig. 4G,J,M, δ =5% noise is added to the values of u and v and δ =
0.5% noise is added to the parameters k1, k3 and k4 every time a new row of
cells is added on the posterior side. An exception is the PORD model, in
which no noise is added to the value of k1=0. In Fig. S16C the amplitude δ of
the multiplicative noise is sampled from a uniform distribution between 1
and 10% for u and v, and between 0.1 and 1.0% for k1, k3 and k4.
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