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The Network Basis of Pattern Formation
A Topological Atlas of Multifunctional Turing Networks
Laura Regueira López de Garayoa and Luciano Marcona,1

This manuscript was compiled on January 27, 2025

Understanding how genetic networks can drive different self-organizing spatial behaviors
remains a significant challenge. Here, we use an automated algebraic method to systematically
screen for Turing networks capable of generating diverse spatial patterns from noise, including
periodic static waves, traveling waves and noise-amplifying patterns. We organize these
networks into a topological atlas—a higher-level graph where nodes represent Turing networks
linked together when they differ by only one regulatory interaction. In this atlas, Turing
networks are arranged into distinct clusters showing a remarkable correspondence between
network topology and self-organizing behaviors. Using an analytical approach, we identify
the specific regulatory feedbacks that characterize each behavior. Moreover, we discover
that different clusters are interconnected by multifunctional networks that can transition
between behaviors upon feedback modulation. Among these networks, we find a new class of
multiphase Turing networks capable of altering the phase of periodic wave patterns depending
on the parameters, and networks that can transition between static and oscillatory Turing
behaviors. The atlas further highlights the crucial role of feedback on immobile nodes in
regulating pattern formation speed and precision by canalizing system noise. Overall, our
study provides a novel framework to study the evolution and development of multicellular
self-organization through changes in network topology and feedback modulation. This offers
insights into how genetic regulatory networks can be tuned to drive pattern formation in
developmental biology and in stem cell systems like embryoids and organoids.

Turing | Self-Organization | Network Topology | Pattern-formation | Noise

Turing’s reaction-diffusion model explains how uniform systems can break
symmetry to generate spatial patterns. Initially proposed to explain early

symmetry-breaking and morphogenesis of the embryo (1), the model was overlooked
in favor of hierarchical systems such as positional information (2). Recently, interest
in Turing’s theory has been renewed in developmental biology (3) and for studying
the self-organization of embryoids and organoids (4). Despite this resurgence, the
precise genetic interactions driving different type of Turing patterns in multicellular
systems remain largely unknown.

Turing proposed that cells could self-organize by exchanging substances called
morphogens, which diffused between cells like hormones and interacted according
to standard chemical reactions. Depending on reaction terms, morphogen systems
could form six types of spatial waves categorized as stationary or oscillatory with
extremely long, extremely short, or finite wavelengths (1). Patterning dynamics
resembling static or oscillatory Turing patterns have been observed in various
biological systems like skin appendages and limb development (5, 6). Although the
key genes involved in these patterning events have been identified, understanding
the interactions that drive Turing behaviors requires analysis through regulatory
principles rather than chemical stoichiometry, as originally proposed by Turing.

Theoretical network screenings have systematically analyzed gene regulatory
networks, identifying simple regulatory principles that promote oscillations (7) and
adaptive responses (8, 9). A comprehensive screening (10) identified three-node
networks capable of forming a peak of gene expression in response to a gradient.
This study organized the networks into an atlas constructed as a higher-level graph
of networks, where each node represented a gene regulatory topology, and edges
connected topologies differing by only one interaction (10). This was a convenient
approach to organizing networks in topological space, clustering similar topologies
together, and identifying six minimal regulatory motifs linked to variations in
underlying feed-forward logic (11). A subsequent study (12) expanded this atlas
to include other patterning behaviors, finding that topological regions of different
mechanisms were connected via multifunctional networks that could switch behaviors
depending on parameters.
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Theoretical network screenings, however, have not been
traditionally applied to Turing systems. Instead, Turing
systems were often studied using minimal two-species models
(3, 13) due to the complexity of deriving patterning conditions
for larger networks (1, 14–20). An exception to this were
pioneering studies that performed a random numerical
screening for all gene regulatory networks capable of spatial
pattern formation (21, 22). More recently, an automated
computer algebra approach was used to analyze larger Turing
networks systematically, identifying minimal three- and four-
node networks with one and two immobile nodes respectively
(23). This was achieved by deriving analytical conditions
to determine the signs of the solutions of the characteristic
polynomial obtained by linear stability analysis (1, 24). These
solutions relate the eigenvalue to the potential spatial patterns
(wavenumbers), forming what is known as the dispersion
relation. This analysis confirmed that the network’s structure
depicted by the Jacobian matrix, which illustrates how
substances interact around a stable state according to the
linear stability analysis, effectively predicts the pattern-
forming capabilities of reaction-diffusion systems (23, 25).

A subsequent study used parameter sampling for linear
stability analysis of 2- and 3-node networks (26), performing
numerical screening to identify parameters yielding a positive
eigenvalue instead of solving analytically the linear stability
analysis. While offering limited parameter coverage, this
method allowed scaling up to non-minimal 3-node networks
with more than six interactions. It also considered cases where
all three nodes were diffusible. The model proposed that all 3-
node networks reduced to two types of 2-node networks (AIJT
and CAIJT), corresponding to minimal Jacobian signs for
Turing patterns, referred to in (13) as Activator-Inhibitor and
Substrate-Depletion systems. The study indicated greater
robustness in AIJT networks, though this depended on the
specific nonlinearities and the implementation of the core
topologies. Indeed, in the simple linear case, these two
topologies have the same parameter space size for Turing
patterns (24).

Another parameter sampling approach represented each
network according to the reaction terms in partial differential
equations, distinguishing competitive and non-competitive
interactions (27). This generated a broader network list
but introduced ambiguity, as it did not clarify which terms
dominate around the homogeneous steady state. For example,
unlike in the Jacobian-based representation, negative linear
terms were ignored in these network diagrams. This led to the
proposal that five different 2-node networks can make Turing
patterns, while traditional Jacobian-based methods identify
only two (1, 23, 24, 26, 27). The study proposed that Turing
networks are sensitive to parameter variations indicating low
robustness. It also identified that core regulatory motifs such
as positive feedback on diffusing nodes, diffusion-mediated
negative feedback loops, and competitive interactions were
prevalent in robust Turing networks (27).

While previous screenings attempted to relate Turing
networks to identify regulatory principles (26, 27), they
did not generated a fully connected topological atlas that
mapped all networks, as achieved in (10, 12). Moreover, these
studies primarily focused on Turing networks generating static
periodic patterns, neglecting oscillatory patterns (23, 26, 27)
and noise-amplifying networks. These networks, also known

as Turing filters, were first described in (23, 25) and later
identified in (27). Turing filters meet Turing conditions but
have dispersion relations that exhibit asymptotic behaviour
for large wavenumbers, as first described in (16). This results
in the amplification of all spatial patterning modes present in
the initial conditions, leading to noisy patterns from random
initial conditions (23, 27) or periodic spatial patterns from
localized initial conditions (25, 28). A crucial requirement
for this behaviour is the absence of a maximum eigenvalue in
the dispersion relation. When the dispersion relation has a
maximum eigenvalue peak, the presence of a lower positive
asymptotic behaviour does not interfere with the Turing
network’s ability to form patterns from noise, as initially
described in (23, 25, 29) and later confirmed in (27).

In this study, we extend our previous analytical screening
approach (23) to identify networks that generate both static
and oscillatory Turing patterns, and also consider noise-
amplifying networks. We organized these networks into a fully
connected atlas, allowing transitions between Turing networks
and behaviours by systematically adding or removing single
interactions. By examining transitions within the atlas and
exploiting the formulas from our analytical approach, we
identify multiphase and multifunctional networks that switch
between pattern phase relations and behaviours based on
regulatory feedback changes. Additionally, we find that
feedbacks on immobile nodes control noise canalization, which
is crucial for pattern timing and precision.

Overall, we show that the atlas helps understand how
regulatory feedback modulation in Turing networks promotes
transitions between self-organizing patterning behaviors
during evolution or development. This approach contributes
to translate Turing’s chemical basis of morphogensis into a
framework based on regulatory network feedback, which is
more suitable for studying multicellular pattern formation
driven by genetic networks.

Results

We performed a comprehensive analysis to construct and
understand a topological atlas of 3-node Turing networks
with one immobile node. This analysis focuses on identifying
networks that can generate static and oscillatory diffusion-
driven patterns, as well as noise-amplifying networks. This
was done in a completely algebraic manner without relying
on parameter sampling and numerical simulations, but rather
by deriving the conditions for the existence of positive or
negative real roots λ of the characteristic polynomial P (λ) =
λ3 + a1(q)λ2 + a2(q)λ + a3(q) in each network, where the
coefficient (a1, a2, a3) contain symbolic parameters for the
rates or network cycle weights, and diffusion coefficients.
More details are provided in the Material and Methods.

By examining transitions between neighbouring networks,
we identify the regulatory mechanisms driving different self-
organizing behaviours analytically. Our results reveals that
networks with distinct behaviors are linked by Multifunc-
tional networks capable of transitioning between behaviors
depending on feedback modulation. The following sections
provide details on the atlas construction and an analysis of
three paths along the atlas, revealing different properties of
Multifunctional networks.
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Construction of the Topological Atlas. To construct the atlas,
we began considering only minimal 3-node Turing networks
having six regulatory interactions. We observed that changing
the sign of a single interaction in these minimal networks (e.g.,
k7 in Figure 1A) disrupts Turing behavior and it is necessary
to change the sign of two interactions simultaneously (e.g., k2
and k3) to maintain it, see SI Appendix. Since reconciling two
simultaneous changes with the progressive changes that may
occur during evolution is difficult, we decided to construct
the atlas alternatively by including non-minimal (extended)
networks with seven regulatory interactions. This approach
allowed us to add or remove single interactions at the time
(e.g., k6 in Figure 1B top) while preserving Turing behavior.
This strategy resulted in a fully connected atlas where nodes
represent Turing networks that are directly connected when
differing by one interaction. Minimal networks with six edges
are represented as square nodes, while those with seven edges
are shown as circular nodes (Figure 1B), with paths in the
atlas corresponding to sequences of alternating minimal and
extended networks.

Node size represents the robustness to parameter changes
of the associated network, calculated as the portion of pa-
rameter space that gives rise to the self-organizing patterning
behaviors. This was determined through a multiple integral
over the defined parameter space for each network (see
Material and Methods). Node colors represent the type
of Turing behavior: static Turing waves (yellow), traveling
waves (blue), multifunctional (green), and noise amplification
(red).

Each network was categorized according to the sign of
the characteristic polynomial’s coefficients a1, a2, and a3,
which predict network behavior (see Materials and Method).
If a3 < 0 and λ has no maximum, the network amplifies
noise. If λ has a maximum, it corresponds to static Turing
wave patterns. Having a1 < 0 or a2 < 0 is a sufficient (but
not necessary) condition for networks to have a λ with a
positive complex part, giving rise to traveling wavesm (see
Material and Methods). Networks with both a3 < 0 and
a1 < 0 or a2 < 0 are Multifunctional, capable of both static
and oscillatory behavior depending on parameters.

Our analysis revealed that the majority of networks in the
atlas generate static Turing patterns (yellow), followed by
Noise-amplifying networks (red), waves (blue), and a minority
of Multifunctional networks (green) (Figure 1C).

It also showed that extended networks are the majority in
each class (Figure 1D). Multifunctional networks are primarily
extended networks (green bar in Figure 1D). Analysis of the
mean robustness for each network class shows that Noise-
amplifying networks are the most robust, followed by static
Turing networks, Multifunctional networks, and Traveling
waves (Figure 1E). The atlas shows a similar proportion of
Type I and Type III networks, which can form static Turing
patterns with differential diffusion (d > 1) or any diffusion
value (d ̸= 0), and a minority of Type II networks that
generate patterns for d < 1 (Figure 1F).

The analytical predictions were confirmed by numerical
simulations shown in Figure 1F-I, details provided in Material
and Methods and SI Appendix.

Pattern Phase and Diffusion Constraints. Next, we derived
an atlas with the subset of networks capable of forming static
Turing patterns (yellow nodes in Figure 1B), including Mul-

tifunctional networks capable of both static and oscillatory
patterns (green nodes in Figure 1B), but excluding traveling
waves and noise amplifiers (Figure S1).

For each node in this reduced atlas, we calculated the type
of diffusion constraint and phase relationships of the network
analytically. Specifically, we identified Type I networks
that require different diffusion rates, Type II networks that
allow equal diffusion rates, and Type III networks that allow
any combination of diffusion rates. These conditions were
determined based on stability conditions for homogeneous
steady states and diffusion-driven instability. The phase
relationships between periodic patterns formed by the network
were analyzed using the relative sign of eigenvectors, reflecting
four possible phases between the three reactants, as detailed
in the Materials and Methods section.

The analysis revealed that in the reduced atlas, networks
with similar diffusion constraints or similar phases cluster
in topological space (Figure 2A), suggesting that specific
regulatory feedbacks determine patterning constraints and
behavior. To characterize these regulatory feedbacks, we
analyzed two key transitions in the atlas, shown by boxes in
Figure 2A.

The first transition considered a Type I, a Type II, and
eventually a Type III network (Figure 2B). The atlas showed
that transitioning between a Type I and a Type III network
always requires passing through a 7-edge Type II network. In
the specific transition considered, the analytical conditions
for homogeneous steady-state stability and diffusion-driven
instability (Figure 2B) showed that adding a new interaction
k6 in the intermediate network introduces a negative feedback
that enlarges the homogeneous steady-state stability parame-
ter space, transitioning from a Type I to a Type II network
allowing for d ≤ 1 (Figure 2C middle). Conversely, removing
an interaction involved in the stability feedback (i.e., k7)
enlarges the diffusion-driven instability space, making the
network unstable for any d (Figure 2C right), transitioning
from a Type II to a Type III network.

The second transition we studied was from a Phase 1
to Phase 1/3 and eventually to a Phase 3 network (Figure
2F). The atlas revealed that transitioning between Phase
1 and Phase 3, or between Phase 2 and Phase 4, always
requires passing through a Multiphase network capable of
both phases. In the specific transition considered, passing
from a Phase 1 to a Multiphase 1/3 network involved adding
the interaction k7, which introduces a new positive feedback.
Altering the strength of this feedback by increasing k7 could
change the relative sign of one eigenvector, altering the
phase relationships of one of the reactants (Figure 2F).
This demonstrated that the relative strength between the
destabilizing positive feedbacks in the network determines the
phase of the network. The pie chart in Figure 2F shows the
parameter space percentages for each phase in the Multiphase
network. We also observed that not all phase transitions are
possible due to specific topological constraints, as Multiphase
networks are not found between all phase pairs. Specifically,
no direct transition through an intermediate Multiphase
network is possible between Phase 1 and 2, and between
Phase 3 and 4 (Figure 2A).

Finally, we also studied neutral transitions in the reduced
atlas, where the addition of interactions did not change the
relative pattern phase. Specifically, we explored transitions
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Fig. 1. Topological atlas of 3-node Turing networks
A) A minimal 3-node Turing network with 6 interactions.
Changing the sign of any interaction (e.g. k7) disrupts
Turing behavior (red cross); two interactions must be
changed simultaneously (e.g. k2, k3) to maintain Turing
patterning. B) Adding a new single interaction (e.g. k6)
can maintain Turing behavior. This strategy can be used
to form a topological atlas, where nodes (e.g., N1, N2,
N3) represent Turing networks. Node are connected when
network differ by one interaction. Square nodes correspond
to 6 edges networks (e.g., N1, N3), circular nodes with
7 edges (e.g., N2). Node size is proportional to the
robustness of the network to parameter changes. Node
color correspond to the of Turing behaviour exhibited by
the network: Static Turing waves (yellow), Traveling waves
(blue), Multifunctional: static or traveling waves depending
on parameters (green) and Noise Amplification (red). C) Top:
pie chart show the number of network for each behaviour.
D) Number of 6 edges and 7 edges networks for each
type of behaviour: 6 edges (light color) and 7 edges (dark
color). Light green is very small because there are only
8 minimal networks out of 208 multifunctional networks.
E) Mean network robustness to parameter space changes
for each Turing behavior. Details of the calculation are
provided in Materials and Methods. The logarithmic scale
emphasizes the substantial differences in robustness across
networks. Turing networks (yellow) are the most robust, with
up to 40% of the parameter space capable of generating
a diffusion-driven instability. These are followed by Noise
(red), Multifunctional (green), and Traveling Wave networks,
which exhibit at most 1% of the parameter space that
promote a diffusion-driven instability. F) Simulation of a
static Turing pattern network identified by a positive real
λ with a maximum promoted by diffusion-driven instability
when the coefficient a3 of the characteristic polynomial is
negative. G) Number of Turing networks Type I (requires
differential diffusivity), Type II (allow equal diffusivity) and
Type III (any diffusivity). H) Simulation of a Noise Amplifying
network identified by a positive real λ with an asymptotic
behaviour promoted by diffusion-driven instability when
a3 < 0. I) Simulation of a Traveling wave network
identified by a complex positive λ promoted by diffusion-
driven instability when a1 < 0 or a2 < 0. L) Simulations of
a Multi-functional network that can form static Turing waves
or Traveling waves depending on parameters.
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among networks that generate in-phase patterns to investigate
the possible evolutionary trajectory of the Nodal-Lefty system
(30), as shown in Figure S2.

Compressed Topological Atlas and Regulatory Logic. Previ-
ously, we showed that any Turing network can be partitioned
into network cycles, with 3-node networks having a maximum
of eight cycles (c1 to c8, Figure 3A) (23, 25). We also demon-
strated that Turing instability conditions can be rewritten
in terms of network cycle weights and their signs (23, 25).
Furthermore, networks represented by a set of cycle signs
correspond to various network topologies (i.e., sets of rates
k1..9), each generating distinct phases of periodic patterns
but operating according to the same cycle weight sign logic
(Figure 3B) (23, 25). This property allows us to compress the
atlas shown in Figure 1B into a smaller atlas, where multiple
network topologies map to a single network represented in
terms of cycles (Figure 3B-C). In this compressed atlas,
connected nodes still represent networks differing by one
interaction, introducing a new cycle, mirroring the structure
of the larger atlas in Figure 1B.

As in the larger atlas, each node in the compressed
atlas can still be classified into one of the behavioral
classes: Turing, Traveling Waves, Multifunctional (Turing
and Traveling Waves), and Noise Amplification (Figure 3C).
This classification is done by studying the change of signs of
the characteristic polynomial’s coefficients a1, a2, a3 promoted
by diffusion-driven instability but written in terms of cycles
c1 to c8 as presented in (25). This confirms the results in
(25), showing that network cycles and their signs are the
main determinants of the patterning capabilities of Turing
networks and diffusion constrains, see also Figure S4 and SI
Appendix. It also challenges previous accounts suggesting
differential robustness between AIJT and CAIJT topologies
(26), as we show that in linear models, these topologies
have equivalent parameter space associated with the same
underlying regulatory logic.

In agreement with the findings of the larger atlas in Figure
1B, we find that networks of the same type cluster together.
Additionally, the compressed atlas reveals that Turing, Trav-
eling Wave, and Noise-Amplifying networks have a similar
average number of neighboring nodes (around 2.25), while
Multifunctional networks have fewer connections (around
1.75), suggesting these networks may mediate connections
between clusters (Figure 3D). Analysis of the neighboring
node types shows that Turing networks primarily connect to
other Turing networks and some Multifunctional or Noise-
Amplifying networks but not to Traveling Waves. Conversely,
Traveling Wave networks connect primarily to other Traveling
Wave and Multifunctional or Noise-Amplifying networks but
not to Turing networks. This confirms that Multifunctional
networks are primarily implemented by extended networks
that serve as intermediaries, connecting static Turing and
Traveling Wave networks (Figure 3C). An exception is
the only minimal Mutlifunctional network found in the
compressed atlas, which is positioned at the center of a small
cluster of Multifunctional networks.

By analyzing the condition for diffusion-driven instability
derived in (25), we identified which cycles promote Turing
instability for each network (Figure 3F-G, see also SI
Appendix). Our analysis shows that in static Turing networks,
it is primarely a positive cycle of length two between a

diffusible and a non-diffusible node (c5 or c6). For traveling
wave formation, it is a positive cycle of length one on a
diffusible node (c3 or c2). This differs from (27), which
suggested that self-regulatory positive feedback on diffusing
nodes are prevalent in static Turing networks. We find that
Multifunctional networks, capable of forming both Turing
and traveling waves, contain both types of positive cycles.
Finally, noise-amplifying networks have a positive auto-
regulatory feedback on the immobile node (c1), confirming
that destabilizing feedback encompassing only immobile nodes
is required for an asymptotic dispersion relation (23, 25).

In the next section, we show that the compressed atlas
provides a comprehensive framework for understanding how
modulating regulatory feedbacks in self-organizing Turing
networks can drive transitions between different patterning
behaviors.

Transitions between Static Turing Patterns and Traveling
Waves. To better understand how different network feedbacks
control Turing patterning behaviors, we explored three
trajectories in the compressed atlas.

Since our analysis of the compressed atlas (Figure 3F)
showed that static Turing patterns are promoted by positive
cycles c5 or c6, which can make a3 negative, while Traveling
Waves networks are characterized by positive cycles c2 or
c3, which can make a1 or a2 negative, we first explored a
trajectory involving the gain or loss of cycles c2 and c6.

We chose the trajectory involving three nodes shown in
Figure 4A-B. For each node, we performed symbolic linear
stability analysis to study how changes in network cycles
promoted transitions from static Turing patterns to Traveling
Waves. Our analysis revealed that adding a positive cycle
c2 to a network that contains a positive c6 transitions it to
a Multifunctional network allowing both positive real and
complex roots, shown in the bifurcation diagram in Figure
4C. Removing cycle c6 while retaining c2 further transitions
the network to a minimal network capable of generating only
Traveling Waves (Figure 4B).

In the Multifunctional network containing both c6 and c2,
the relative strength of these cycles controls the maximum
values of the positive real and complex eigenvalues, deter-
mining the dominant behavior (Figure 4D). When c2 ≪ c6,
static Turing patterns dominate; conversely, when c2 ≫ c6,
traveling waves dominate. Numerical simulations with
three parameter sets where both complex and real positive
eigenvalues exist (points 1, 2, 3 in Figure 4C) confirmed
that the dominant patterning behavior could be predicted
by the relative maximum magnitude of the real and complex
eigenvalues (Figure 4E).

To further test the predictive power of the bifurcation
diagram shown in Figure 4C, we defined a trajectory within
the multifunctional parameter space (green region in Figure
4C) to modulate network behavior over time (from t0 to
tf ), investigating the potential for transitioning between
patterning behaviors during embryonic development. By
promoting a linear reduction in c6 strength over time
(Figure 4F), the Multifunctional network first formed a static
Turing pattern that then transformed into Traveling waves,
highlighted by a space-time plot in Figure 4G. In a 2D
domain slightly smaller than the wavelength, this modulation
generated a straight stripe that propagated along its axis
(Figure 4H).
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Fig. 2. Reduced atlas of static Turing networks: topology determines diffusion constrains and pattern phase. A) A sub-graph of the atlas shown in Figure 1B obtained
by considering only static Turing networks (yellow and green nodes). Left: Nodes are colored according to network type: Type I (blue) requires differential diffusivity, Type II
(light green) can have equal diffusivity, Type III (light blue) allow for any diffusivity. The square highlights the transition shown in panel (B). Right: Nodes are colored according to
the relative phase between the periodic patterns (legend below). The square highlights the network shown in panel D. Node size corresponds to robustness to parameter
changes. B-C) Analysis of the transition between a Type I, Type II and Type III network shown in (A) on the left. B) A trade off between homogeneous steady state stability
(stability) and diffusion-driven instability (instability) conditions determine the constrain on diffusion coefficient ratio d for the three networks (1,2,3). C) Top: graphs showing the
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on the right in (d) forms periodic patterns Phase 3. H) Example of a 7 edges network that forms only patterns in Phase 1.
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Fig. 3. Compressed topological atlas with cycle anal-
ysis. A) The different cycles (c1..8) in a three-node gene
network used to analyze Turing patterning in terms of
network feedbacks. B) Cycles can be used to map multiple
networks to the same underlying regulatory logic (same
cycle signs). The example shows four different networks
(k1..k7) mapped to a single network with negative cycles
c1, c4, and c5 (red) and a positive c1 cycle (green). C)
A compressed version of the atlas in Figure 1B where
each node corresponds to a set of network cycles. Square
nodes contain 4 cycles (6 interactions) and are connected to
circular nodes with 5 cycles (7 interactions). Network colors
correspond to Turing patterning behaviors: Turing (yellow,
T), Traveling Waves (blue, W), Multifunctional (green, M),
and Noise-Amplification (red, N). D) Average number of
direct neighboring nodes per network type: Turing, Traveling
Waves, and Noise-Amplifying networks have approximately
2.5 neighbors, while Multifunctional networks have approx-
imately 1.7 neighbors. E) Proportion of neighbor types
per network type: Turing nodes connect to other Turing
nodes (yellow) and some Multifunctional (green) and Noise-
Amplifying (red) nodes, but not to Traveling Waves (blue);
Traveling Wave nodes connect primarily to other Traveling
Waves (blue), Multifunctional (green), and Noise-Amplifying
(red) nodes, but not to Turing networks (yellow). Multi-
functional networks always mediate transitions between
Turing and Traveling Wave nodes (see also panel C). F)
Each circle represents networks destabilized by a specific
cycle to form diffusion-driven instability. The large yellow
circle corresponds to networks destabilized by c5 > 0
or c6 > 0, promoting static Turing patterns (yellow).
The blue circles correspond to networks destabilized by
c2 > 0 or c3 > 0, promoting Traveling Waves (blue).
The red circle corresponds to networks destabilized by
c1 > 0, promoting Noise-Amplifying patterns (red). The
small yellow circle corresponds to networks where c1 <

0 contributes to destabilization, promoting static Turing
patterns (yellow). Intersections between circles represent
networks destabilized by two cycle types: green regions
are Multifunctional networks destabilized simultaneously
by (c5 > 0 or c6 > 0) and (c2 > 0 or c3 > 0). The
yellow region between the yellow and red circles represents
networks destabilized simultaneously by (c5 > 0 or
c6 > 0) and (c1 > 0), promoting static Turing patterns.
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Finally, to further explore the ability of the Multifunctional
network, we defined a modulation over a wider range of
the parameter space by decreasing c6 and increasing c2
simultaneously, see the arrow from point a to b in Figure 4C.
This modulation transitioned from a pure Turing region (a),
having only a positive real eigenvalue, to a pure traveling
wave region (b), having only a positive complex eigenvalue.
Our aim was to test whether this wider modulation could
be promoted by a linear morphogen gradient M, driving a
transition between static Turing patterns to traveling waves
over space rather than time (Figure 4I). In agreement with our
predictions, one-dimensional simulations generated one peak
of a static Turing pattern on one side of the spatial domain
connected to a region of traveling waves on the opposite side
(Figure 4L-M). This type of modulation could be relevant
for several self-organizing systems such as Gastruloids (31),
where the modulation of different signaling pathway feedback
could be linked to the formation of an axis at one extreme of
the aggregate, transitioning into traveling waves that resemble
somitogenesis at the other aggregate extreme, see Figure S3.

We also analyzed a different type of transition between a
Traveling Wave and a Multifunctional network, highlighted
in Figure S5. As mentioned above, Static Turing Wave
networks are characterized by a positive destabilizing cycle
c5 or c6 that makes a3 negative. Our analysis showed that
an alternative transition to Multifunctional networks can
be achieved by introducing a negative cycle c1 rather than
c6, which changes the contribution of c2 in the characteristic
polynomial coefficient a3 making it negative (Figure 5C). This
demonstrates an alternative path to Multifunctional behavior,
highlighting the complex interaction between feedbacks in
Turing networks to transition between patterning behaviors.

Transition Between Turing and Noise Amplifying Networks. In
the atlas, both static Turing networks and Noise-amplifying
networks are predominant (Figure 1B), and direct transitions
are possible between these two network types (Figure 3C). As
shown in Figure 3F, most static Turing patterns are driven by
cycles c5 > 0 or c6 > 0, while all Noise Amplifying networks
have c1 > 0. At the intersection of these clusters, networks
sometimes display normal Turing patterning behavior and
sometimes noise amplification. To better understand these
intermediate cases, we analyzed a transition in the compressed
atlas from a noise-amplifying network to three subsequent
Turing nodes, marked by changes in c1 and gains in c6,
highlighted by the box on the right in Figure 4A and in
Figure 4O.

In this transition, we observed that the sign and strength of
c1 significantly affect the shape of the dispersion relation and
pattern formation capabilities (Figure 4N-O). A positive c1
results in a higher asymptote for large wavenumbers, leading
to greater unspecific amplification of modes. Lowering c1
reduces this asymptote, decreasing unspecific amplification
and resulting in more precise patterns.

In agreement with this prediction, 1D and 2D simulations
show that a positive c1 promotes fast patterning with random
noise amplification (Figure 4P-Q). When c1 strength is
smaller and coexists with c6, it leads to static Turing patterns
that are noisy and have irregular wavelengths in 2D. As c1
decreases to zero, patterning slows and becomes more regular.
Further negative values of c1 continue to slow down patterning
and improve its regularity.

The intuitive interpretation of these results is that the
self-regulatory loop c1 on the immobile node plays a crucial
role in destabilizing the network because this node is not
subjected to the equilibrating force of diffusion. A positive
feedback on c1 enhances this destabilization, while negative
feedbacks mitigate it. From a biological and evolutionary
standpoint, these findings suggest that cell autonomous
feedback mechanisms involving immobile nodes are essential
for modulating the trade-off between the speed and precision
of pattern formation.

Discussion

The topological atlas presented in this study offers a novel
framework to understand how Turing networks transition
between different self-organizing behaviours in multi-cellular
systems. Employing an automated algebraic method, we
identified the networks that give rise to static, oscillatory,
and noise-amplifying Turing patterns. This is crucial for
understanding self-organization during development, where
modulations of gene regulatory networks drive changes in
patterning behaviour over time or space. We systematically
mapped and categorized Turing networks based on their
topology and patterning capabilities, advancing previous
network screenings that focused primarily on networks that
generate static Turing patterns (23, 24, 26, 27).

A notable feature in the atlas is that minimal networks
(6 interactions) with different behaviours are connected
by extended networks (7 interactions) exhibiting hybrid
multifunctional behaviour. These intermediate networks can
display two types of self-organizing behaviours depending on
interaction strength.

This include multiphase networks that can generate peri-
odic Turing patterns with different phase relations between
reactants depending on the parameters. These networks have
not been described previously and may explain changes in the
relative phase of periodic patterns observed for self-organizing
patterning during embryionic development. For instance, they
could account for the switch between in-phase and out-of-
phase patterns of BMP signaling (pSmad) and Sox9 observed
in digit patterning, as shown in the supplementary material
of (6).

On the other hand, we used the atlas to explore topological
changes that are neutral from a patterning phase perspective
but lead to more robust Turing networks. The atlas confirmed
our previous proposition (23) that changes in network
topology can enhance the robustness of the Nodal-Lefty
system, where Nodal and its inhibitor Lefty are co-expressed
and proposed to be part of a Turing network (30). Specifically,
we identified a transition from a network where Lefty inhibits
only the receptor to an extended network where Lefty also
directly inhibits Nodal (Figure S2). This introduces a
redundant interaction and improves the network’s robustness
to parameter changes. Similar neutral transitions in the atlas
could be exploited to study the possible implementation of
other self-organizing Turing systems during developmental.

Exploiting the representation of Turing conditions in terms
of cycles, as introduced in (25), we derived a compressed atlas,
where several networks with the same underlying regulatory
logic are mapped into one network with a set regulatory
cycle signs (see Figure 3B). This allowed us to identify
which regulatory modules (cycles signs) drive different Turing
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Fig. 4. Transition between Noise amplifying, Turing
and Traveling Wave networks. A) The boxes highlight
two transitions analyzed in detail: 1) Transition between
a Turing network (yellow square), a multifunctional net-
work (green circle), and a traveling waves network (blue
square), studied in panels B-M. 2) Transition between a
noise amplifying network (red square) and static Turing
networks (yellow square and circles), studied in panels N-
Q. B) Details of transition 1. Left: 1D Turing network
(yellow square) with a destabilizing positive cycle c6
generates a periodic static pattern (straight lines in space-
time plot). Middle: addition of new cycle c2 promotes
transition from a static Turing network to a multifunctional
network (green circle). Right: losing cycle c6 promotes a
transition to traveling waves driven by c2 (diagonal lines
in space-time plot). C) Parameter space associated with
diffusion-driven instability for different strengths of c2 and
c6 in the multifunctional network (green circle, panel B).
The yellow region has only a positive real eigenvalue
(Turing). The blue region has only a positive complex
eigenvalue (Traveling Waves). The green region has
both a complex and real positive eigenvalue (Turing and
Waves) with points (1..3) showing parameters used in D-E,
and horizontal arrow between 3 and 1 showing temporal
modulation of c6 (t0 to tf) simulated in panels G-H. The
arrow from point a to b shows spatial modulation used for
simulations in panels L-M. D) Positive real (orange) and
complex (blue) eigenvalues for parameter sets (1..3). For
c2 ≪ c6, the positive real eigenvalue associated with
Turing patterns is larger; for c2 ≈ c6, both eigenvalues
have similar maximums; for c2 ≫ c6, the complex posi-
tive eigenvalue associated with traveling waves is larger.
E) Space-time plot of simulations for parameter sets (1..3)
shows the relative magnitude of the eigenvalues correctly
predicts the patterning outcome. When they have equal
magnitude (c2 ≈ c6), both static and traveling waves
coexist. F-G) A continuous linear decrease of c6 over time
(from t0 to tf ) promotes the formation of a static Turing
pattern that transforms into traveling waves (straight lines
transform into diagonals in space-time plot). H) In a
2D simulation, temporal c6 modulation promotes the
formation of a stripe that begins to propagate. I-L) A linear
change of c6 and c2 in space (from point a to b) promoted
by a morphogen M drives a transition in space from static
Turing pattern to traveling waves. M) This type of transition
can help interpret the self-organizing patterning dynamics
observed in Gastruloids (31). N) Details of transition 2:
From left to right, a decreasing c1 promotes transitions
from a noise amplifying network (c1 ≫ 0, red square)
to three Turing networks (c1 > 0, yellow circle; c1 = 0,
yellow square; and c1 < 0, yellow circle). O) Dispersion
relations for networks in panel N with decreasing values
of c1 and varying c5. Ordered from left to right: noise
amplifying networks with 0 < c1 < 1.2; Turing network
with c1 = 0.25 and 0 < c5 < 1.19; Turing network
with c1 = 0 and 0 < c5 < 1.5; and Turing network
with c1 = −0.3 and 1.5 < c5 < 1.875. In the
noise amplifying case, the value of c1 corresponds to
the asymptote of the dispersion relation. In the other
cases, as c1 decreases, the dispersion relations shift
towards negative values. P) 1D simulations show that as
c1 decreases, lower eigenvalues promote slower pattern
formation (black cross marks later pattern appearance
in space-time plots). Q) 2D simulations show that as
c1 decreases, the smaller range of modes that become
unstable in practice due to the eigenvalue shifting towards
negative values promotes more precise two-dimensional
patterns with a characteristic wavelength.
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behaviours (Figure 3F). This is significant because defining
modules within Turing networks is particularly challenging
due to the extensive feedback loops characteristic of these
networks, where every gene seems to be connected with every
other gene. It could also provide a way to reduce larger
Turing networks into equivalent smaller ones, as done in (32).
The cycle decomposition approach, however, extends beyond
Turing systems and can be applied to any stability analysis
of PDE systems with feedback.

The cycle-based atlas also confirmed that networks with
different Turing behaviours are connected by extended
Multifunctional networks. For instance, networks that form
static Turing patterns and those that form travelling waves
are connected by networks possessing two positive feedback
cycles that can promote both real and complex positive
eigenvalue, as shown in Figure 4B-C. Changing the strength
of these cycles alters the relative magnitude between the two
eigenvalues, leading to a smooth transition between static
Turing patterns and oscillations, see Figure 4D-E.

An intriguing property of these Multifunctional networks
is their ability to transition between behaviour over time
(Figure 4F-G) promoting scenarios where the output of one
self-organizing regime acts as initial conditions for the next,
implementing developmental patterning dynamics driven by
stigmergy, as proposed by Sasai Yoshiki (33). This can lead to
more controlled self-organizing dynamics. An example is the
2D simulation shown in Figure 4H, where a multifunctional
Turing network first forms a straight stripe from noise, in
the regime of a static Turing pattern on a domain sized
approximately as the wavelength, which then transforms
into a series of travelling waves moving along the stripe’s
direction. Modulating the cycle strength to change self-
organizing behaviour can also be relevant to investigating
transitions between self-organizing regimes across tissues
(Figure 4I-M), as seen in the Gastruloids presented in (31)
(Figure S3).

Finally, the cycle-based atlas highlights that self-regulatory
feedbacks on non-diffusible nodes play a critical role in
controlling the stochasticity of pattern formation. Positive
feedback on these nodes accelerates pattern formation but
introduces more noise, while negative feedbacks slow down
pattern formation and enhance precision, as shown in Figure
4N-Q. This reveals a fundamental mechanism by which
developmental systems can balance the trade-off between
speed and accuracy in pattern formation, a common challenge
in many complex systems. It also highlights the mechanisms
by which reaction-diffusion systems generate patterns by
amplifying and filtering the periodic modes present in the
initial noise of the system. Faster amplification and less
filtering result in noisier patterns, while slower amplification
and narrower filtering (e.g., narrow dispersion relation)
produce more precise patterns.

Overall, the atlas can be used to interpret how Turing
networks have evolved, providing a design space of Turing
networks that evolution may have explored to reach specific
configurations. Trajectories along the atlas represent possi-
ble pathways of topological changes that maintain Turing
behaviour, associated with single regulatory changes, and can
sequentially move from one patterning behaviour to another.
Our calculation of robustness to parameter changes for each

network indicates the likelihood of these new networks being
found at random.

Additionally, the atlas, though composed of different
networks, can be seen as a general map of the behaviour of a
large Turing network with many feedbacks. Many biological
networks, especially gene regulatory networks controlling
development, possess several feedbacks. In this context, the
atlas highlights the feedbacks that are more important for
specific behaviours in a fully connected 3 gene regulatory
network. This suggests possible directions of change that can
be promoted by feedback modulation in a network during
development. Although changes are continuous in the atlas
thanks to the presence of multifunctional states, not all paths
are allowed.

Ultimately, our approach reframes Turing’s original idea
within a network-based framework, moving beyond the
traditional chemical reaction perspective (1) towards a
”network basis of pattern formation”. This is a step forward
to relate Turing systems with the gene networks driving self-
organizing patterning during development (3). It also reveals
novel network designs that can help to construct complex
synthetic networks capable of transitioning between different
self-organizing behaviours. Recent efforts have successfully
engineered a Turing network with a 3 node regulatory logic
in bacteria, achieving static patterns and demonstrating the
potential for further advancements towards multifunctional
capabilities (34).

In the future, we believe that our approach can be
expanded to include all seven diffusion-driven instability be-
haviours proposed by Turing and incorporate larger networks.
Given the exponential increase in analytical complexity in
these systems, it would be necessary to complement our
current analytical approach with numerical analysis, as done
in (26, 27).

Materials and Methods

Previous studies have already proposed mathematical theorems to
derive simpler analytical conditions for diffusion-driven instability
in general three-reactant reaction-diffusion systems (17, 20). To
simplify the conditions even further we perform a systematic
automated analysis by focusing only on minimal (6 edges) and
extended (7 edges) networks of three reactants, with 3 and
2 elements set to zero in the Jacobian matrix. In addition,
we consider only the case where one of the three species is
immobile (one element in the diagonal diffusion matrix set to
zero), simplifying the conditions and broadening the criteria
for diffusion-driven instability (14, 18, 23). Finally, we derived
necessary and sufficient conditions for static Turing patterns and
sufficient conditions for oscillatory Turing patterns by combining
the Routh-Hurwitz criterion with simpler condition for the stability
of three reactant system derived in (35, 36), as introduced in the
supplementary material in (25). For simulations, we construct
simple PDE systems from the Jacobians to simulate spatial
patterning under different parameter regimes identified by the
linear stability analysis.

Conditions for Stationary and Oscillatory Turing Patterns. We de-
rived the necessary and sufficient conditions for the formation
of Turing instability by analyzing the roots of the characteristic
polynomial P (λ) = λ3 +a1(q)λ2 +a2(q)λ+a3(q) obtained by linear
stability analysis for each network, where λ is the eigenvalue and q
the wavenumber. The solution to the characteristic polynomial as
a function of q is called dispersion relation. For a diffusion-driven
instability to occur, the characteristic polynomial must have all
negative roots for q = 0 (condition 1) and at least one root with
a positive real part for q > 0 (condition 2 or 3). Necessary and
sufficient conditions for the existence of a all negative roots can
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be derived with the Routh-Hurwitz criterion (37), as outlined in
the supplementary material of (25).

The Routh-Hurwitz criterion is obtained by constructing the
Hurwitz matrix H, which for a polynomial of the third degree is
defined as:

H =

(
a1(q) 1 0
a3(q) a2(q) 0

0 0 a3(q)

)
The criterion states that all roots of the polynomial have negative
real parts if and only if the determinants of the leading principal
minors of H are positive:

∆1(q) = a1(q) > 0

∆2(q) =
∣∣∣a1(q) 1
a3(q) a2(q)

∣∣∣ = a1(q)a2(q) − a3(q) > 0

∆3(q) = det(H) = a3(q)∆2(q) > 0 ≡ ∆3(q) = a3(q) > 0

[1]

Conversely, if any of the Hurwitz terms ∆1, ∆2 or ∆3 becomes
negative, the characteristic polynomial has at least one root with
a positive real part. The number of roots with a positive real part
in this case can further be estimated by the sign changes in the
first column of the Routh array (37), which for a polynomial of
degree three can be constructed as follows:

λ3 1 a2(q)
λ2 a1(q) a3(q)
λ1 a1(q)a2(q)−a3(q)

a1(q) 0
λ0 a3(q) 0

The first column of the Routh array is:

Rh = [1, a1(q),
a1(q)a2(q) − a3(q)

a1(q)
, a3(q)]

Stationary Turing networks. Stationary Turing patterns occur when
a single real eigenvalue becomes positive, specifically when the
first column of the Routh array Rh exhibits a single sign change
Rh = [+, +, +, −] for q > 0. This is a sufficient condition not
only for the existence of a positive real root but also to guarantee
that there are no other real positive roots. In section 2 of the
supporting information, we demonstrate that for a third-degree
polynomial this condition can be further simplified into:

a3(q) < 0, for q > 0 [2]
which ensures that a1(q) > 0 & a1(q)a2(q) − a3(q) > 0

guaranteeing that Rh = [+, +, +, −].
This represents a significant simplification since analyzing all

the terms in the Routh array becomes analytically impracticable
in many cases.

Oscillatory Turing networks. Oscillatory Turing patterns occur
when the characteristic polynomial has a complex positive root.
This is the case when Rh exhibits two sign changes, Rh =
[+, −, +, +] or Rh = [+, +, −, +] or Rh = [+, −, −, +] for q > 0,
associated with two complex conjugate roots with a positive real
part. As mentioned above, analyzing all the terms in the Routh
array is often analytically impracticable. Fortunately, in section
2 of the supporting information, we demonstrate that for a third-
degree polynomial this condition can be further simplified into:

a2(q) < 0 for q > 0 [3]
This condition simplifies the analysis considerably by guaranteeing
two sign changes in the Routh array, providing necessary and suf-
ficient conditions for the formation of oscillatory Turing patterns.

Multifuctional Turing Networks. To identify multifunctional net-
works capable of both oscillatory and static patterns, we require
that the simplified conditions 2 and 3 can be satisfied by the
network, both independently or simultaneously. The first case
identifies the parameters that give rise to either a positive
real eigenvalue or a positive complex eigenvalue. The second
case identifies parameters that give rise to eigenvalue that can
simultaneously give rise to both situation simultenously for different
wave numbers q (e.g., the green parameter space in Figure 4C). This

allows us to pinpoint networks that can switch between oscillatory
and static behaviours depending on parameter variations, providing
a comprehensive understanding of the network’s multifunctional
capabilities.

Noise-amplifying Turing Networks. If a Turing network has an
eigenvalue with a positive asymptote for q → ∞, a condition
previously identified as necessary for the amplification of noise
(23, 25), we verify whether the dispersion has a maximum above
this asymptote to classify the network as noise amplifying.

This verification involves obtaining parameters that satisfy
diffusion-driven instability with the FindInstance command in
Wolfram Mathematica. In the case of multifunctional network we
derive parameters for both static Turing patterning and traveling
wave behaviour. Starting from these parameters we derive several
parameter sets by allowing one parameter to vary from its minimum
to its maximum allowed values as determined by the linear stability
analysis conditions. For each parameter set, we calculate the
asymptote of the dispersion relation using the function Limit
for q → ∞. λ(q). Secondly we find the maximum eigenvlue
numerically using the function FindMaximum.

If the maximum eigenvalue is lower than the limit for q → ∞
for all parameter sets of the network, we consider the network
as a noise amplifying. Overall, we observe that if the limit is
larger than the maximum, noise-amplifying networks consistently
produce static patternss, regardless of the presence of a positive real
root with a complex part. This supports our earlier finding that
oscillatory noise-amplifying networks are only feasible in systems
with four nodes (25).

Numerical Simulation. To simulate a network, we obtained repre-
sentative Jacobian values (kN

1 , . . . kN
9 ) and diffusion coefficients

(dN
v , dN

w ) that respect patterning conditions of the network N
with the FindInstance command of Wolfram Mathematica, and
construct a system of PDEs for the concentration vector c =
(u, v, w)T is given by:

∂c
∂t

= JN c − c3 + DN ∇2c

where JN is the Jacobian matrix of the network obtain by
substituting the parameters (kN

1 , . . . kN
2 ), DN is the diagonal

diffusion matrix obtained by substituting (dN
v , dN

w ), and c3

represents cubic non-linear terms that provide saturation:

JN =

(
kN

1 kN
3 kN

7
kN

2 kN
4 kN

8
kN

5 kN
6 kN

9

)
, DN =

(
0 0 0
0 dN

v 0
0 0 dN

w

)
, c3 =

(
u3

v3

w3

)
Note that JN has 3 or 2 elements set to 0 in minimal and extended
networks respectively, and u is the immobile specie with du = 0,
and we consider periodic boundary conditions. This PDE systems
have always one stable equilibrium at c0 = (u0, v0, w0) = (0, 0, 0)
and generates periodic waves by diffusion-driven instability around
this stable point. We begin the simulations with a random initial
conditions for for all the three reactant uniformly distributed in
the interval (−0.0005, 0.0005) around c0.

We perform 1D ans 2D simulations using a first order finite
difference scheme for space discretization and and forward Euler
method for time discretization, written in Wolfram Mathematica.
The domain size L and total simulation T time are calculated
according to the wavelength ω = 2Π/qmax and maximum
eigenvalue λmax obtained from the linear stability analysis, as
follows:

L = ω ∗ 4 T = 20/λmax

with high resolution space discretization ds = L/300 and time
discretization dt = T/207 to avoid numerical errors. All the
simulations confirm as proposed by Turing (1) that the diffusion-
driven behaviour can be correctly predicted by the linearized
version of the system around steady state, while the non linear
part c3 plays only a saturating effect for large deviation from
equilibrium.

Network Robustness Calculation. To assess the robustness of each
network N , we quantify the volume of the parameter space that
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satisfies the diffusion-driven conditions derived from the linear
stability analysis. This involves integrating all the diffusion-driven
instability conditions f and it is done by fixing one negative
feedback rate at -1 and one diffusion coefficient at 1, thereby
calculating the relative parameter space. The relative parameter
space volume is calculated over the ranges: 0.1 to 10 for reaction
rates ki and 0.001 to 100 for the relative diffusion coefficient ratio
d.

The robustness R(f) is thus calculated as the integral over the
defined parameter space:

R(f) =
∫ 1

0
· · ·
∫ 10

0.1

∫ 100

0.001
f(ki, d) dki dd

After obtaining R(f) for each network, we standardize the
robustness values by dividing each R(f) by the maximum robust-
ness value observed (i.e the most robust network), R(fmax). The
normalized atlas robustness r(f) for each network i is then given
by:

r(fi) =
R(fi)

R(fmax)

The size of a node representing a network N in the atlas is
logarithmically proportional to r(fi). This approach quantifies the
likelihood of a given network achieving diffusion-driven instability
with randomly assigned parameters, and also provides a measure
of the network’s robustness to parameter changes.

Diffusion Constrain. As introduced in (23), Turing networks with
an immobile specie exhibit distinct types of diffusion constraints
for pattern-forming conditions. These constraints are categorized
as follows: Type I networks require differential diffusivity, Type II
networks allow equal diffusivity, and Type III networks have no
specific diffusivity constraints.

The classification of network types is derived by checking
weather the diffusion-driven instability conditions can be satisfied
in the following cases:

Type I, dv > dw ∨ dw > dv

Type II, dv = dw

Type III, ∀dv∀dw

Pattern Phase. The relative phase pattern generated by each net-
works, which can be categorized into four distinct configurations:

Phase 1: All three nodes in-phase
Phase 2: Node v out-of-phase, u and w in-phase
Phase 3: Node u out-of-phase, v and w in-phase
Phase 4: Node w out-of-phase, u and v in-phase

To predict the pattern phase generated by a network, we do not
perform numerical simulations, instead we analyze the relative sign
of the eigenvectors associated with the eigenvalue that promote
diffusion-driven instability.

For a given network, we first we obtain a set of parameters
(k1..k9) with the FindInstance command in Wolfram Mathematica
that satisfy the diffusion-driven instability conditions. We let
each parameter ki to change within diffusion-driven instability
range and calculate in each case the eigenvectors E(λ(qmax)) =
(Eu(qmax), Ev(qmax), Ew(qmax) associated with the positive eigen-
value values. For each case we calculate the relative signs of the
eigenvectors as:

Eu,u =
Eu(qmax)
Eu(qmax)

= 1, Ev,u =
Ev(qmax)
Eu(qmax)

, Ew,u =
EW (qmax)
Eu(qmax)

The relative sign of the phase vector φ = (Ev,u, Ew,u)
determines the phase of the periodic patterns:

Phase 1, φ1 : φ = (+, +) Phase 2, φ2 : φ = (−, +)
Phase 3, φ3 : φ = (−, −) Phase 4, φ4 : φ = (+, −)

The eigenvectors can be plotted as a function of ki to identify
Multiphase networks, as shown in Figure 2F.
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